The inflammatory response is a complex regulated effector mechanism of the innate immune system that is initiated after tissue injury or infection. The NLRP3 inflammasome is an important initiator of inflammation by regulating the activation of caspase-1, the maturation of pro-inflammatory cytokines and the induction of pyroptotic cell death. Numerous studies demonstrate that the NLRP3 inflammasome could be modulated by lipids, existing a relation between lipids and the activation of different inflammatory processes. In this review we will summarize how the mechanism of NLRP3 inflammasome activation is regulated by different lipids and how these lipids control specific cellular localization of NLRP3 during activation. Although being a cytosolic protein, NLRP3 interacts with lipids accessible in neighbor membranes. Also, the modulation of NLRP3 by endogenous lipids has been found causative of different metabolic diseases and bacterial-pathogenic lipids lead to NLRP3 activation during infection. The understanding of the modulation of the NLRP3 inflammasome by lipids has resulted not only in a better knowledge about the mechanism of NLRP3 activation and its implication in disease, but also opens a new avenue for the development of novel therapeutics and vaccines, as NLRP3 could be modulated by synthetic lipids used as adjuvants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613582 | PMC |
http://dx.doi.org/10.1016/j.plipres.2022.101182 | DOI Listing |
J Agric Food Chem
January 2025
Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy.
Background: Several respiratory viruses, including Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), suppress nuclear factor-E2-related factor-2 (NRF2) antioxidant response, generating oxidative stress conditions to its advantage. NRF2 has also been reported to regulate the innate immune response through the inhibition of the interferon (IFN) pathway. However, its modulation in younger individuals and its correlation with the IFN response remain to be elucidated.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Department of Cardiology, The First Affiliated Hospital of Soochow University Suzhou, Jiangsu, 215000, China.
Severe sepsis can promote myocardial injury and cardiac dysfunction, but role of p16 in sepsis-induced myocardial injury remains undefined. PBMCs were collected from patients. Expression of inflammatory factors and NLRP3 pathway were detected by Western blotting and qPCR in WT and p16KO mice.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Immunochemistry Laboratory, Butantan Institute, São Paulo, SP, Brazil; Center of Toxins, Cell Signaling and Immune Response (CeTICS), CEPID, FAPESP, Brazil. Electronic address:
The complement system plays a crucial role in various pathophysiological conditions, including snake envenomation. In this study, we investigated the effects of Bitis arietans venom on the complement system using an ex vivo human whole blood model. Our findings demonstrate that B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!