Tau-specific immunotherapy is an attractive strategy for the treatment of Alzheimer's disease and other tauopathies. However, effectively targeting tau in the brain remains a considerable challenge due to the restrictive nature of the blood-brain barrier (BBB), which excludes an estimated >99% of peripherally administered antibodies. However, their transport across the BBB can be facilitated by a novel modality, low-intensity scanning ultrasound used in combination with intravenously injected microbubbles (SUS). We have previously shown that SUS-mediated delivery of a tau-specific antibody in a single-chain (scFv) format to tau transgenic mice enhanced brain and neuronal uptake and subsequently, reduced tau pathology and improved behavioural outcomes to a larger extent than either scFv or SUS on its own. Here we generated a novel tau-specific monoclonal antibody, RNF5, and validated it in its IgG format in the presence or absence of SUS by treating K369I tau transgenic K3 mice once weekly for 12 weeks. We found that both RNF5 and SUS treatments on their own significantly reduced tau pathology. In the combination group (RNF5 + SUS), however, despite increased antibody localization in the brain, there were no further reductions in tau pathology when compared to RNF5 treatment alone. Furthermore, following SUS, RNF5 accumulated heavily within cells across the pyramidal cell layer of the hippocampus, that were negative for MAP2 and p-tau, suggesting that SUS may not facilitate enhanced RNF5 engagement of intraneuronal tau. Overall, our new findings reveal the complexities of combining tau immunotherapy with SUS and challenge the view that this is a straight-forward approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2022.07.026 | DOI Listing |
J Clin Med
January 2025
Department of Epileptology, University Hospital Bonn (UKB), 53127 Bonn, Germany.
In light of the growing interest in the bidirectional relationship between epilepsy and dementia, this review aims to provide an overview of the role of hyperphosphorylated tau (pTau) in cognition in human epilepsy. A literature search identified five relevant studies. All of them examined pTau burden in surgical biopsy specimens from patients with temporal lobe epilepsy.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore.
Alzheimer's disease (AD) is characterised by progressive neurodegeneration with the formation of amyloid beta (Aβ) plaques and neurofibrillary tau tangles in the brain parenchyma. The causes of AD have been attributed to a combination of age-related changes within the brain as well as genetic, environmental and lifestyle factors. However, a recent study by Banerjee et al.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Autonomic Nervous System Center, School of Philosophy and Sciences, São Paulo State University, Marília 17525-902, São Paulo, Brazil.
Alzheimer's disease (AD) remains a leading cause of cognitive decline and mortality worldwide, characterized by neurodegeneration, synaptic deficiencies, and neuroinflammation. Despite advancements in early detection, diagnosis, and treatment, AD presents substantial challenges due to its complex pathology, heterogeneity, and the limited efficacy of current therapies. Consequently, there is a pressing need for novel therapeutic agents to target the multifaceted aspects of AD pathology, enhance current treatments, and minimize adverse effects.
View Article and Find Full Text PDFBiomedicines
December 2024
Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, China.
Introduction: Alzheimer's disease (AD) patients with higher educational attainment (EA) often exhibit better cognitive function. However, the relationship among EA status, AD pathology, structural brain reserve, and cognitive decline requires further investigation.
Methods: We compared cognitive performance across different amyloid beta (Aβ) positron emission tomography (A ±) statuses and EA levels (High EA/Low EA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!