A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modern intracranial electroencephalography for epilepsy localization with combined subdural grid and depth electrodes with low and improved hemorrhagic complication rates. | LitMetric

AI Article Synopsis

  • The study explores a hybrid approach to invasive epilepsy monitoring that combines subdural grids, strips, and depth electrodes aimed at improving outcomes and reducing complications compared to traditional methods.
  • Analysis of data from 137 procedures shows that the use of additional depth electrodes does not increase the risk of hemorrhage, with a significant reduction in hematoma incidence over time as surgical techniques improved.
  • The overall complication rate was low, with temporary neurological deficits in some cases, and by the end of the study period, no new hematomas were reported among patients monitored in the last four years.

Article Abstract

Objective: Recent trends have moved from subdural grid electrocorticography (ECoG) recordings toward stereo-electroencephalography (SEEG) depth electrodes for intracranial localization of seizures, in part because of perceived morbidity from subdural grid and strip electrodes. For invasive epilepsy monitoring, the authors describe the outcomes of a hybrid approach, whereby patients receive a combination of subdural grids, strips, and frameless stereotactic depth electrode implantations through a craniotomy. Evolution of surgical techniques was employed to reduce complications. In this study, the authors review the surgical hemorrhage and functional outcomes of this hybrid approach.

Methods: A retrospective review was performed of consecutive patients who underwent hybrid implantation from July 2012 to May 2022 at an academic epilepsy center by a single surgeon. Outcomes included hemorrhagic and nonhemorrhagic complications, neurological deficits, length of monitoring, and number of electrodes.

Results: A total of 137 consecutive procedures were performed; 113 procedures included both subdural and depth electrodes. The number of depth electrodes and electrode contacts did not increase the risk of hemorrhage. A mean of 1.9 ± 0.8 grid, 4.9 ± 2.1 strip, and 3.0 ± 1.9 depth electrodes were implanted, for a mean of 125.1 ± 32 electrode contacts per patient. The overall incidence of hematomas over the study period was 5.1% (7 patients) and decreased significantly with experience and the introduction of new surgical techniques. The incidence of hematomas in the last 4 years of the study period was 0% (55 patients). Symptomatic hematomas were all delayed and extra-axial. These patients required surgical evacuation, and there were no cases of hematoma recurrence. All neurological deficits related to hematomas were temporary and were resolved at hospital discharge. There were 2 nonhemorrhagic complications. The mean duration of monitoring was 7.3 ± 3.2 days. Seizures were localized in 95% of patients, with 77% of patients eventually undergoing resection and 17% undergoing responsive neurostimulation device implantation.

Conclusions: In the authors' institutional experience, craniotomy-based subdural and depth electrode implantation was associated with low hemorrhage rates and no permanent morbidity. The rate of hemorrhage can be nearly eliminated with surgical experience and specific techniques. The decision to use subdural electrodes or SEEG should be tailored to the patient's unique pathology and surgeon experience.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2022.5.JNS221118DOI Listing

Publication Analysis

Top Keywords

depth electrodes
20
subdural grid
12
grid strip
8
outcomes hybrid
8
depth electrode
8
surgical techniques
8
nonhemorrhagic complications
8
neurological deficits
8
subdural depth
8
electrode contacts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!