Discovering bioactive compounds from medicinal herbs is crucial for drug discovery. Ultrafiltration is often used in the screening of bioactive compounds from natural herbs because of its simple and rapid operations. However, the ultrafiltration results are often disturbed by the undissolved compounds and the non-target compounds, which reduces the accuracy of the results. Herein, an affinity interaction guided two-dimensional (2D) separation system was developed. Discovery of the potential neuraminidase (NA) inhibitors from the dried roots of Reynoutria japonica Houtt. (RRJ) was used as an example. Only the small molecules showing affinity interaction with NA could be screened by the affinity interaction guided 2D separation system. Firstly, the NA and crude extract were incubated to form a sample solution (containing NA-inhibitor complexes, NA, and three types of small molecules with different polarities) by affinity interaction. Then the sample solution was separated and detected by the 2D separation system. This aimed to reduce the interference of the undissolved compounds and non-target compounds, and pick out the NA-inhibitor complexes (NA-Is). The collected NA-Is were denatured to release small molecular inhibitors (Is) for LC-MS/MS analysis. Compared with the ultrafiltration, more obvious peak area differences were observed in the results, and four potential NA inhibitors were successfully identified. In all, we provided a simple strategy with better performance in the screening of natural bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2022.463338DOI Listing

Publication Analysis

Top Keywords

affinity interaction
20
separation system
16
interaction guided
12
bioactive compounds
12
guided two-dimensional
8
two-dimensional separation
8
neuraminidase inhibitors
8
reynoutria japonica
8
japonica houtt
8
undissolved compounds
8

Similar Publications

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

Front Chem

December 2024

African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.

Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

View Article and Find Full Text PDF

Improving Generalizability of Drug-Target Binding Prediction by Pre-trained Multi-view Molecular Representations.

Bioinformatics

January 2025

School of Information Science and Technology, Institute of Computational Biology, Northeast Normal University, Changchun, 130117, Jilin China.

Motivation: Most drugs start on their journey inside the body by binding the right target proteins. This is the reason that numerous efforts have been devoted to predicting the drug-target binding during drug development. However, the inherent diversity among molecular properties, coupled with limited training data availability, poses challenges to the accuracy and generalizability of these methods beyond their training domain.

View Article and Find Full Text PDF

Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).

View Article and Find Full Text PDF

In Silico Method for ssDNA Aptamer Binding with Aurora Kinase A Protein.

Methods Mol Biol

January 2025

Department of Biotechnology, College of Natural and Applied Science, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.

While traditional assay methods face challenges in detecting specific proteins, aptamers, known for their high specificity and affinity, are emerging as a valuable biomarker detection tool. Aurora kinase A (AURKA) plays a role in cell division and influences stem cell reprogramming. In this study, an in silico approach method was conducted for a random ssDNA aptamer sequence selection and its binding with AURKA.

View Article and Find Full Text PDF

Babesia bigemina is an apicomplexan parasite responsible for causing "Texas fever" in bovines. Current treatments for bovine babesiosis are hindered by several limitations, including toxicity, insufficient efficacy in eliminating the parasite, and the potential for resistance development. A promising approach to overcome these challenges is the identification of compounds that specifically target essential metabolic pathways unique to the parasite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!