High-pressure homogenization: A potential technique for transforming insoluble pea protein isolates into soluble aggregates.

Food Chem

Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China. Electronic address:

Published: December 2022

High-pressure homogenization (HPH) is a technique that impacts the aggregation of globular proteins. In this study, the effect of HPH (at a pressure of 30/50 MPa for three cycles) was investigated on the aggregation states and functional properties of insoluble commercial pea protein isolates (CPPI). Results showed that HPH significantly improved the solubility, foaming and emulsifying capacity of CPPI. Samples treated at 50 MPa demonstrated better foaming and emulsifying capacity than that at 30 MPa. Surface hydrophobicity, intrinsic fluorescence, SDS-PAGE and FTIR analysis revealed that insoluble precipitates/aggregates (most legumins included) of CPPI were broken down and converted into soluble aggregates. Low-pressure HPH (30 MPa) can break non-covalent bonds (hydrophobic interactions), whereas higher pressure (50 MPa) can further break covalent bonds (SS). The study sheds light on the mechanism of disruption of insoluble CPPI under HPH and proposes a method to enhance their techno-functional properties for application in food formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133684DOI Listing

Publication Analysis

Top Keywords

high-pressure homogenization
8
pea protein
8
protein isolates
8
soluble aggregates
8
cppi hph
8
foaming emulsifying
8
emulsifying capacity
8
hph
5
homogenization potential
4
potential technique
4

Similar Publications

Marine microalgae are emerging as promising sources of polyphenols, renowned for their health-promoting benefits. Recovering polyphenols from microalgae requires suitable treatment and extraction techniques to ensure their release from the biomass and analytical methodologies to assess their efficiency. This review provides a comprehensive comparison of traditional and cutting-edge extraction and analytical procedures applied for polyphenolic characterization in marine microalgae over the past 26 years, with a unique perspective on optimizing their recovery and identification.

View Article and Find Full Text PDF

Pomegranate is one of the most popular fruits worldwide, and it is important to maintain the overall quality and bioaccessibility of freshly squeezed pomegranate juices (PJS). The adverse effects of heat treatment on sensory properties and phytochemicals encourage the use of non-thermal processes in the juice industry. Hereby, the effects of high-pressure homogenization (HPH) (50, 100, and 150 MPa) on the physicochemical properties, antimicrobial activity, in vitro bioaccessibility, and antioxidant capacity of freshly-squeezed PJS from different genotypes were investigated.

View Article and Find Full Text PDF

Cellulose biocomposites have emerged as attractive alternatives to fossil-based plastics because of their excellent renewability and biodegradability; however, their water resistance and mechanical properties remain challenging. Herein, a cellulose- containing bioplastic with high a reinforcement content, water stability, and toughness is reported. Lignin-containing cellulose nanofibers (LCNF) were prepared by pretreating eucalyptus wood powder with a deep eutectic solvent and high-pressure homogenization.

View Article and Find Full Text PDF

High-pressure homogenization transformed salmon protein filament into micelle structure: Improvement on the stability and swallowing rheology of dysphagia-oriented salmon emulsion gels.

Food Chem

December 2024

College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen 518060, China. Electronic address:

The aging population is stimulating increased demand for dysphagia-oriented foods, yet most current options are made of ultra-processed macronutrients and lack high-quality protein and ω-3 fatty acids. This study explores the use of whole salmon fillets as a myofibrillar protein source to stabilize salmon backbone oil, creating ω-3-rich emulsion gels (50-60 vol%) for dysphasia individuals. Two-step high-pressure homogenization (HPH; 50 MPa) improved emulsion texture, storage stability, and swallowability (IDDSI level 4) by reducing oil droplet size (from 20 to 2 μm) and increasing elastic modulus by 6-8 times and viscosity by more than 10 times.

View Article and Find Full Text PDF

Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair.

Biomater Sci

December 2024

Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India.

Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!