AI Article Synopsis

  • The study explores a new electrocatalyst, nitrogen and oxygen comodified carbon nanotubes (N,O-CNTs), for improving the efficiency of the 2-electron oxygen reduction reaction (ORR), which is essential for producing hydrogen peroxide (H₂O₂) in renewable energy applications.
  • N,O-CNTs demonstrate over 95% selectivity for H₂O₂ across a wide voltage range (0 to 0.65 V), outperforming traditional carbon nanotubes (CNTs) and oxygen-rich CNTs, which have lower selectivity.
  • The research indicates that the enhanced performance is due to specific interactions at the molecular level, where nitrogen and oxygen doping optimize the adsorption energies of reaction intermedi

Article Abstract

Electrochemical 2-electron oxygen reduction reaction (ORR) is a promising route for renewable and on-site H O production. Oxygen-rich carbon nanotubes have been demonstrated their high selectivity (≈80%), yet tailoring the composition and structure of carbon nanotubes to further enhance the selectivity and widen working voltage range remains a challenge. Herein, combining formamide condensation coating and mild temperature calcination, a nitrogen and oxygen comodified carbon nanotubes (N,O-CNTs) electrocatalyst is synthesized, which shows excellent selective (>95%) H O selectivity in a wide voltage range (from 0 to 0.65 V versus reversible hydrogen electrode). It is significantly superior to the corresponding selectivity values of CNTs (≈50% in 0-0.65 V vs RHE) and O-CNTs (≈80% in 0.3-0.65 V vs RHE). Density functional theory calculations revealed that the C neighbouring to N is the active site. Introducing O-related species can strengthen the adsorption of intermediates *OOH, while N-doping can weaken the adsorption of in situ generated *O and optimize the *OOH adsorption energy, thus improving the 2-electron pathway. With optimized N,O-CNTs catalysts, a Janus electrode is designed by adjusting the asymmetric wettability to achieve H O productivity of 264.8 mol kg h .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507382PMC
http://dx.doi.org/10.1002/advs.202201421DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
16
oxygen reduction
8
voltage range
8
synergistic effects
4
effects no-comodified
4
carbon
4
no-comodified carbon
4
nanotubes
4
nanotubes boost
4
boost highly
4

Similar Publications

1,4-Dihydroxyanthraquinone (1,4-DHAQ, a fluorophore) doped carbon nanotubes@cellulose (1,4-DHAQ-doped CNTs@CL) nanofibrous membranes have been prepared electrospinning and subsequent deacetylation in this work. They have been successfully applied for highly sensitive detection of Cu in aqueous solution. The surface area per unit mass (S/M) ratio of the nanofibrous membranes was enhanced by incorporating the CNTs into cellulose.

View Article and Find Full Text PDF

Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.

View Article and Find Full Text PDF

Doping strategies have been recognized as effective approaches for developing cost-effective and durable catalysts with enhanced reactivity and selectivity in the electrochemical synthesis of value-added compounds directly from CO. However, the reaction mechanism and the specific roles of heteroatom doping, such as N doping, in advancing the CO reduction reaction are still controversial due to the lack of precise control of catalyst surface microenvironments. In this study, we investigated the effects of N doping on the performances for electrochemically converting CO to CO over Ni@NCNT/graphene hybrid structured catalysts (Ni@NCNT/Gr).

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!