Using Deep Learning to Fill Data Gaps in Environmental Footprint Accounting.

Environ Sci Technol

School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan 48109, United States.

Published: August 2022

Environmental footprint accounting relies on economic input-output (IO) models. However, the compilation of IO models is costly and time-consuming, leading to the lack of timely detailed IO data. The RAS method is traditionally used to predict future IO tables but suffers from doubts for unreliable estimations. Here we develop a machine learning-augmented method to improve the accuracy of the prediction of IO tables using the US summary-level tables as a demonstration. The model is constructed by combining the RAS method with a deep neural network (DNN) model in which the RAS method provides a baseline prediction and the DNN model makes further improvements on the areas where RAS tended to have poor performance. Our results show that the DNN model can significantly improve the performance on those areas in IO tables for short-term prediction (one year) where RAS alone has poor performance, improved from 0.6412 to 0.8726, and median APE decreased from 37.49% to 11.35%. For long-term prediction (5 years), the improvements are even more significant where the is improved from 0.5271 to 0.7893 and median average percentage error is decreased from 51.12% to 18.26%. Our case study on evaluating the US carbon footprint accounts based on the estimated IO table also demonstrates the applicability of the model. Our method can help generate timely IO tables to provide fundamental data for a variety of environmental footprint analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c01640DOI Listing

Publication Analysis

Top Keywords

environmental footprint
12
ras method
12
dnn model
12
footprint accounting
8
poor performance
8
ras
5
method
5
tables
5
model
5
deep learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!