The integration of dissimilar materials in heterostructures has long been a cornerstone of modern materials science-seminal examples are 2D materials and van der Waals heterostructures. Recently, new methods have been developed that enable the realization of ultrathin freestanding oxide films approaching the 2D limit. Oxides offer new degrees of freedom, due to the strong electronic interactions, especially the 3d orbital electrons, which give rise to rich exotic phases. Inspired by this progress, a new platform for assembling freestanding oxide thin films with different materials and orientations into artificial stacks with heterointerfaces is developed. It is shown that the oxide stacks can be tailored by controlling the stacking sequences, as well as the twist angle between the constituent layers with atomically sharp interfaces, leading to distinct moiré patterns in the transmission electron microscopy images of the full stacks. Stacking and twisting is recognized as a key degree of structural freedom in 2D materials but, until now, has never been realized for oxide materials. This approach opens unexplored avenues for fabricating artificial 3D oxide stacking heterostructures with freestanding membranes across a broad range of complex oxide crystal structures with functionalities not available in conventional 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202203187 | DOI Listing |
J Am Chem Soc
December 2024
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.
View Article and Find Full Text PDFAnal Chem
December 2024
Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
In ambient mass spectrometry, the performance in direct in situ analysis applications has been hindered by the lack of efficient ion-transferring technique between the atmosphere pressure ionization source and the mass analyzer. Building upon the hybrid concept of a stack ring ion guide and multipole ion guide, this study proposes the concept of a reconfigurable twisted dipole ion guide (TDIG) that enables flexible ion transfer between atmosphere and vacuum. Initially, theoretical and numerical studies were conducted to understand the basic ion confining principle of the twisted dipole ion guide, revealing its unique merits in long-distance flexible ion transmission.
View Article and Find Full Text PDFChemistry
December 2024
Xinjiang Medical University, State Key Laboratory of Pathogenesis, State Key Laboratory of Pathogenesis, Urumqi, CHINA.
Small molecules with an acceptor-donor-acceptor (A-D-A) structure, featuring a fused-ring core as the donor and two electron-withdrawing end groups as acceptor units, represent a potential option for NIR-II fluorophores, benefiting from their narrow bandgaps, superior light-harvesting capabilities, and exceptional photostabilities. However, their planar conformations predispose them to forming H-aggregates during self-assembly, leading to significantly reduced fluorescence quantum yield (QY) of the resulting nanofluorophores. Herein, we report a small molecule, PF8CN, with a terminal unit-A-D-A-terminal unit structure.
View Article and Find Full Text PDFChemistry
December 2024
Tongji University, School of Chemical Science and Engineering, 1239 Siping Road, Shanghai, CHINA.
Upconverted circularly polarized luminescence (UC-CPL) active organic and organic-inorganic composite materials have garnered increasing attention due to their vast potential applications in areas such as 3D displays, encryptions, spintronics and optoelectronic devices. However, effective methods for fabricating chiral inorganic materials exhibiting UC-CPL remain a challenge. Herein, we propose an approach for the synthesis of UC-CPL active chiral mesostructured CeO2 powders (CMCs) via a hydrothermal growth method, using L/D-aspartic acid as symmetry-breaking and structure-directing agents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Beijing Institute of Smart Energy, Beijing 102200, China.
Supramolecular chirality has gained immense attention for great potential, in which the rational engineering strategy facilitates unique helical stacking/assembly, high chiroptical behavior, and prime biomedical activity. In this study, we reported a novel chiral organic donor-acceptor cocrystal based on asymmetrical components of benzo()naphtho(1,2-)thiophene (BNT) and 9-oxo-9H-indeno(1,2-)pyrazine-2,3-dicarbonitrile (DCAF) that exhibited red emission using a simple solution approach. During the self-assembly, a kinetically controlled growth of polar solvent or substrate induction led to the chiral packing and helical morphology twisted by the cooperation of electrostatic potential energy and chirality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!