AI Article Synopsis

  • Primary nucleation is the initial step in the transformation of normal proteins into harmful amyloid aggregates, linked to diseases like Alzheimer's and Parkinson's.
  • The presence of surfaces significantly influences this nucleation process, either speeding up or slowing down protein aggregation depending on the strength of the interaction with the surface.
  • Experimental and theoretical analyses reveal that nucleation rates are highest at intermediate surface interaction strengths, providing crucial insights into the factors that govern amyloid formation.

Article Abstract

Primary nucleation is the fundamental event that initiates the conversion of proteins from their normal physiological forms into pathological amyloid aggregates associated with the onset and development of disorders including systemic amyloidosis, as well as the neurodegenerative conditions Alzheimer's and Parkinson's diseases. It has become apparent that the presence of surfaces can dramatically modulate nucleation. However, the underlying physicochemical parameters governing this process have been challenging to elucidate, with interfaces in some cases having been found to accelerate aggregation, while in others they can inhibit the kinetics of this process. Here we show through kinetic analysis that for three different fibril-forming proteins, interfaces affect the aggregation reaction mainly through modulating the primary nucleation step. Moreover, we show through direct measurements of the Gibbs free energy of adsorption, combined with theory and coarse-grained computer simulations, that overall nucleation rates are suppressed at high and at low surface interaction strengths but significantly enhanced at intermediate strengths, and we verify these regimes experimentally. Taken together, these results provide a quantitative description of the fundamental process which triggers amyloid formation and shed light on the key factors that control this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351353PMC
http://dx.doi.org/10.1073/pnas.2109718119DOI Listing

Publication Analysis

Top Keywords

free energy
8
nucleation rates
8
primary nucleation
8
nucleation
5
adsorption free
4
energy predicts
4
predicts amyloid
4
amyloid protein
4
protein nucleation
4
rates primary
4

Similar Publications

Exploring the synergistic effect of NaOH/NaClO absorbent in a novel wet FGD scrubber to control SOx/NOx emissions.

Environ Monit Assess

January 2025

International Joint Research Center For Green Energy and Chemical Industry, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Escalating SOx and NOx emissions from industrial plants necessitates customized scrubbing solutions to improve removal efficiency and tackle cost limitations in existing wet FGD units. This work investigates the real-time intensified removal pathways via an innovative two-stage countercurrent spray tower configuration strategically integrating NaOH (M) and NaOH/NaClO (M/M) to remove SOx and NOx emissions simultaneously from the industrial stack through a comprehensive parametric study of absorbents concentration, reaction temperature, gas flow rate, liquid to gas ratio (F/F), and absorbent showering head. Flue gas stream comprising SO bearing 4500 ppm, SO bearing 300 ppm, 70 ppm NO, and 50 ppm NO brought into contact with two scrubbing solutions as M, and a complex absorbent of M/M at varying respective ratios.

View Article and Find Full Text PDF

Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.

View Article and Find Full Text PDF

Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.

View Article and Find Full Text PDF

Direct Partial Transformation of 2D Antimony Oxybromide to Halide Perovskite Heterostructure for Efficient CO Photoreduction.

Small

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

The photocatalytic activity of lead-free perovskite heterostructures currently suffers from low efficiency due to the lack of active sites and the inadequate photogenerated carrier separation, the latter of which is hindered by slow charge transfer at the heterostructure interfaces. Herein, a facile strategy is reported for the construction of lead-free halide-perovskite-based heterostructure with swift interfacial charge transfer, achieved through direct partial conversion of 2D antimony oxybromide SbOBr to generate CsSbBr/SbOBr heterostructure. Compared to the traditional electrostatic self-assembly method, this approach endows the CsSbBr/SbOBr heterostructure with a tightly interconnected interface through in situ partial conversion, significantly accelerating interfacial charge transfer and thereby enhancing the separation efficiency of photogenerated carriers.

View Article and Find Full Text PDF

Regulating Intermediate Adsorption and Promoting Charge Transfer of CoCr-LDHs by Ce Doping for Enhancing Electrooxidation of 5-Hydroxymethylfurfural.

Small

January 2025

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

Electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) to generate high-value chemicals under mild conditions acts as an energy-saving and sustainable strategy. However, it is still challenging to develop electrocatalysts with high efficiency and good durability. Here, nickel foam (NF) supported CoCrCe(7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!