Nutrient enrichment alters plant community structure and function at a global scale. Coastal plant systems are expected to experience increased rates of nitrogen and phosphorus deposition by 2100, caused mostly by anthropogenic activity. Despite high density of studies investigating connections between plant community structure and ecosystem function in response to nutrient addition, inconsistencies in system response based on the ecosystem in question calls for more detailed analyses of nutrient impacts on community organization and resulting productivity response. Here, we focus on nutrient addition impacts on community structure and organization as well as productivity of different lifeforms in a coastal grassland. We established long-term nutrient enrichment plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments. In 2017 we collected graminoid and forb productivity, root productivity, and community composition for each plot. We found no N x P interaction, but N enrichment was a significant main effect on productivity, highlighting N limitation in coastal systems. Importantly, nutrient enrichment treatments did not alter root productivity. However, all treatments caused significant differences in community composition. Using rank abundance curves, we determined that community composition differences were driven by increased dominance of nitrophilous graminoids, re-organization of subordinate species, and species absences in N and NP plots. Results of this study highlight how coastal grassland communities are impacted by nutrient enrichment. We show that community re-organization, increased dominance, and absence of critical species are all important mechanisms that reflect community-level impacts of nutrient enrichment in our coastal grassland site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333261PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270798PLOS

Publication Analysis

Top Keywords

nutrient enrichment
24
coastal grassland
16
plant community
12
community structure
12
nitrogen phosphorus
12
community composition
12
nutrient
9
community re-organization
8
re-organization increased
8
enrichment coastal
8

Similar Publications

As endpoints of watersheds, bays concentrate erosion- and human-derived substances such as dissolved inorganic nutrients and pollutants. We investigated the water movement and biogeochemistry of two bays in Curaçao: Piscadera Bay and Spaanse Water, during the dry (May 2022 and 2023) and wet seasons (November 2021 and 2023). Bay-ocean exchange was limited during the dry season, enhancing nutrient concentrations in the bays.

View Article and Find Full Text PDF

Unveiling the P-solubilizing potential of bacteria enriched from natural colonies of Red Sea Trichodesmium spp.

Sci Total Environ

January 2025

The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.

Phosphorus (P) is pivotal for all organisms, yet its availability is, particularly in the marine habitat, limited. Natural, puff-shaped colonies of Trichodesmium, a genus of diazotrophic cyanobacteria abundant in the Red Sea, have been demonstrated to capture and centre dust particles. While this particle mining strategy is considered to help evade nutrient limitation, details behind the mechanism remain elusive.

View Article and Find Full Text PDF

Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.

View Article and Find Full Text PDF

This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.

View Article and Find Full Text PDF

Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).

Plant Mol Biol

January 2025

Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.

Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!