Cheater suppression and stochastic clearance through quorum sensing.

PLoS Comput Biol

Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada.

Published: July 2022

The evolutionary consequences of quorum sensing in regulating bacterial cooperation are not fully understood. In this study, we reveal unexpected effects of regulating public good production through quorum sensing on bacterial population dynamics, showing that quorum sensing can be a collectively harmful alternative to unregulated production. We analyze a birth-death model of bacterial population dynamics accounting for public good production and the presence of non-producing cheaters. Our model demonstrates that when demographic noise is a factor, the consequences of controlling public good production according to quorum sensing depend on the cost of public good production and the growth rate of populations in the absence of public goods. When public good production is inexpensive, quorum sensing is a destructive alternative to unconditional production, in terms of the mean population extinction time. When costs are higher, quorum sensing becomes a constructive strategy for the producing strain, both stabilizing cooperation and decreasing the risk of population extinction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9333318PMC
http://dx.doi.org/10.1371/journal.pcbi.1010292DOI Listing

Publication Analysis

Top Keywords

quorum sensing
28
public good
20
good production
20
production quorum
8
bacterial population
8
population dynamics
8
population extinction
8
quorum
7
sensing
7
production
7

Similar Publications

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Quorum sensing controls numerous processes ranging from the production of virulence factors to biofilm formation. Biofilms, communities of bacteria that are attached to one another and/or a surface, are common in nature, and when they form, they can produce a quorum of bacteria. One model system to study biofilms is the bacterium , which forms a biofilm that promotes the colonization of its symbiotic host.

View Article and Find Full Text PDF

Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects.

Bioorg Chem

January 2025

Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India. Electronic address:

Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections.

View Article and Find Full Text PDF

A novel separated OPECT aptasensor based on MOF-derived BiVO/BiS type-II heterojunction for rapid detection of bacterial quorum sensing signal molecules.

Talanta

January 2025

Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China. Electronic address:

Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection.

View Article and Find Full Text PDF

Lithium enhanced plasmid-mediated conjugative transfer of antimicrobial resistance genes in Escherichia coli: Different concentrations and mechanisms.

Aquat Toxicol

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China. Electronic address:

Conjugative transfer, a pivotal mechanism in the transmission of antimicrobial resistance genes, is susceptible to various environmental pollutants. As an emerging contaminant, lithium (Li) has garnered much attention due to its extensive applications. This research investigated the effects of Li on conjugative transfer process, examining biochemical and omics perspectives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!