Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04099-wDOI Listing

Publication Analysis

Top Keywords

anticancer
9
oxygen- sulphur-containing
8
sulphur-containing heterocyclic
8
heterocyclic compounds
8
anticancer agents
8
oxygen- sulphur-based
8
anticancer drugs
8
heterocyclic
6
oxygen-
4
compounds potential
4

Similar Publications

The development of small molecule-based drugs emerged as a cornerstone of modern drug discovery. Structural activity relationship (SAR) studies in medicinal chemistry are crucial for lead optimization, where a subtle change in the substituent can significantly alter its binding affinity with the biological target. Herein, a highly efficient single-atom substitution (SAS) approach has been developed, where sulfur for oxygen strategy is utilized as a powerful molecular editing technique to identify N-vinyl Indole-thiobarbituric acid (6a) as a novel small molecule-based scaffold with tunable photophysical and antiproliferative activities.

View Article and Find Full Text PDF

Background: Effective treatment for patients with metastatic cancer is limited, particularly for colorectal cancer patients with metastatic liver lesions (mCRC), where accessibility to numerous tumours is essential for favourable clinical outcomes. Oncolytic viruses (OVs) selectively replicate in cancer cells; however, direct targeting of inaccessible lesions is limited when using conventional intravenous or intratumoural administration routes.

Methods: We conducted a multi-centre, dose-escalation, phase I study of vaccinia virus, TG6002, via intrahepatic artery (IHA) delivery in combination with the oral pro-drug 5-fluorocytosine to fifteen mCRC patients.

View Article and Find Full Text PDF

Introduction: BRAF mutations are the most common driver mutation in cutaneous melanoma, present in 40% of cases. Rationally-designed BRAF targeted therapy (TT) has been developed in response to this, and alongside immune checkpoint inhibitors (ICI), forms the backbone of systemic therapy options for BRAF-mutant melanoma. Various therapeutic approaches have been studied in the neoadjuvant, adjuvant and advanced settings, and there is a wealth of information to guide clinicians managing these patients.

View Article and Find Full Text PDF

The aim of this study was to present a nationwide survey on the specialist's attitudes towards stereotactic body radiotherapy (SBRT) combined with poly (ADP-ribose) polymerase inhibitors (PARPi) with oligometastatic/oligoprogressive/oligorecurrent ovarian cancer (oMPR-OC) patients. The 19-item questionnaire was developed by specialists and distributed online. Replies were stratified by categories and analyzed using descriptive statistics.

View Article and Find Full Text PDF

Folding an RCA Scaffold into an Intelligent Coiled Nanosnake for Precise/Synergistic RNAi-/Chemotherapy of Cancer.

Anal Chem

January 2025

Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.

An RCA product is a promising scaffold for the construction of DNA nanostructures, but so far, there is no RCA scaffold-based dynamic reconfigurable nanorobot for biological applications. In this contribution, we develop an intracellular stimuli-responsive reconfigurable coiled DNA nanosnake (N-Snake) by using incomplete aptamer-functionalized (A) DNA tetrahedrons (T) to fold a long tandemly repetitive DNA strand synthesized by rolling circle amplification reaction (R) with the help of palindromic fragment (P). A DNA-assembled product, ARTP, including spiked aptamers, can retain the structural integrity even if exposed to fetal bovine serum (FBS) for 24 h and displays substantially enhanced target molecule-dependent cellular internalization efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!