Studies have shown that repetitive transcranial magnetic stimulation (rTMS) can enhance synaptic plasticity and improve neurological dysfunction. However, the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood. In this study, we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS. To help determine the mechanism of action, we measured levels of several important brain activity-related proteins and their mRNA. On the injured side of the brain, we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor, tropomyosin receptor kinase B, N-methyl-D-aspartic acid receptor 1, and phosphorylated cAMP response element binding protein, which are closely associated with the occurrence of long-term potentiation. rTMS also partially reversed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure. These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396518PMC
http://dx.doi.org/10.4103/1673-5374.346548DOI Listing

Publication Analysis

Top Keywords

traumatic brain
16
brain injury
16
moderate traumatic
12
repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
promotes neurological
8
synaptic plasticity-related
8
mechanism rtms
8
brain
6

Similar Publications

Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact.

View Article and Find Full Text PDF

Objective: Older adults have an increased risk of developing persistent cognitive complaints after mild traumatic brain injury (mTBI). Yet, studies exploring which factors protect older adults with mTBI from developing such complaints are rare. It has been suggested that one such factor may be cognitive reserve (CR), but it is unknown how CR influences cognition in this patient category.

View Article and Find Full Text PDF

Regenerative Potential of Neural Stem/Progenitor Cells for Bone Repair.

Tissue Eng Part B Rev

January 2025

Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.

The increasing number of elderly people across the globe has led to a rise in osteoporosis and bone fractures, significantly impacting the quality of life and posing substantial health and economic burdens. Despite the development of tissue-engineered bone constructs and stem cell-based therapies to address these challenges, their efficacy is compromised by inadequate vascularization and innervation during bone repair. Innervation plays a pivotal role in tissue regeneration, including bone repair, and various techniques have been developed to fabricate innervated bone scaffolds for clinical use.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) and subsequent post-traumatic epilepsy (PTE) often impair daily activities and mental health (MH), which contribute to long-term TBI-related disability. PTE also affects driving capacity, which impacts functional independence, community participation, and satisfaction with life (SWL). However, studies evaluating the collective impact of PTE on multidimensional outcomes are lacking.

View Article and Find Full Text PDF

Priority Clinical Actions for Outpatient Management of Nonhospitalized Traumatic Brain Injury.

J Neurotrauma

January 2025

Zuckerberg San Francisco General Hosptial and Trauma Center, University of California, San Francisco, San Francisco, California, USA.

Outpatient care following nonhospitalized traumatic brain injury (TBI) is variable, and often sparse. The National Academies of Sciences, Engineering, and Medicine's 2022 report on highlighted the need to improve the consistency and quality of TBI care in the community. In response, the present study aimed to identify existing evidence-based guidance and specific clinical actions over the days to months following nonhospitalized TBI that should be prioritized for implementation in primary care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!