Combining chemotherapy with photothermal therapy (PTT) for cancer treatment could overcome the inherent limitations of both single-modality chemotherapy and PTT. However, the obstacle of accurate drug delivery to tumor sites based on chemo-photothermal remains challenging. This article describes development of a reactive oxygen species (ROS)-responsive hyaluronic acid-based nanoparticle to overcome these drawbacks. Herein, HA-TK-MTX (HTM) was synthesized by a ROS-responsive cleaved thioketal moiety linker (TK) of methotrexate (MTX) and hyaluronic acid (HA). Through hydrophobic interaction and π-π stacking interaction, a photothermal agent IR780 was integrated into the HTM, and the IR780/HTM nanoparticles (IHTM NPs) were obtained. The IHTM NPs show high photostability, excellent photothermal performance, remarkable tumor-targeting ability, and ROS sensibility. Due to the accurate drug delivery ability and superior chemo-photothermal treatment effect of IHTM NPs, the tumor inhibition rate reached 70.95% for 4T1 tumor-bearing mice. This work serves as a precedent for the chemo-photothermal therapy of cancer by rationally designing ROS-responsive nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.2c00472DOI Listing

Publication Analysis

Top Keywords

ihtm nps
12
ros-responsive hyaluronic
8
chemo-photothermal therapy
8
therapy cancer
8
accurate drug
8
drug delivery
8
design ros-responsive
4
hyaluronic acid-methotrexate
4
acid-methotrexate conjugates
4
conjugates synergistic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!