Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 S cm) compared to 1 (1.6 × 10 S cm). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5-1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 S cm in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp01856j | DOI Listing |
Heliyon
December 2024
Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
The pristine phases SS1(ZnO), SS2(MnO), and SS3 (CuO) photocatalysts and mixed phases of ZnO-based nanocomposites were synthesized by the sol-gel method. Whereas SS4 (g-CN) was prepared through polymerization of urea. The synthesized photocatalysts were characterized using TGA-DTA, XRD, DRS, PL, DLS, FTIR, SEM, TEM, and HRTEM.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Materials Science and Engineering, University of California, Davis, California 95616, United States.
Silicate-based adsorbents offer significant advantages over traditional materials, particularly due to their superior thermal and chemical stability, enhanced regenerability, and the ability to endure more rigorous operating conditions. In this study, an amorphous Na-Ca-magnesium silicate adsorbent (SAAM) and its g-CN-modified counterpart (gCN-SAAM) were synthesized via alkali activation and a subsequent thermal process, respectively. The g-CN modification resulted in a novel hybrid adsorbent with a remarkable methylene blue (MB) adsorption capacity of 420 mg g, four times higher than the unmodified sample, setting a new benchmark.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Objectives: Acute lung injury (ALI) is an excessive inflammatory condition with the involvement of M1 alveolar macrophage (AM) polarization. Given the high mortality rate of ALI, elucidating its underlying mechanisms is crucial for identifying therapeutic targets. Inhibition of P300, a lysine acetyltransferase, has illustrated the potential to alleviate inflammatory diseases through the regulation of immune cell activation.
View Article and Find Full Text PDFJ Control Release
December 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China. Electronic address:
Abnormally elevated levels of reactive oxygen species (ROS) are considered one of the characteristics of tumors and have been extensively employed in the construction of tumor-activated prodrugs. However, ideal ROS-activated molecular triggers that possess high sensitivity and easy functionalization for tailoring specific prodrugs, remain scarce. In this work, we developed a highly reactive oxygen species (hROS, such as •OH, ONOO and HOCl)-responsive molecular trigger (namely FDROS-4) through the conjunction of methylene blue (MB) and 2, 6-bis (hydroxymethyl) aniline via urea bond, integrating imaging and therapeutic functions.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!