In recent years, globalization, global warming, and population aging have contributed to the spread of emerging viruses, such as coronaviruses (COVs), West Nile (WNV), Dengue (DENV), and Zika (ZIKV). The number of reported infections is increasing, and considering the high viral mutation rate, it is conceivable that it will increase significantly in the coming years. The risk caused by viruses is now more evident due to the COVID-19 pandemic, which highlighted the need to find new broad-spectrum antiviral agents able to tackle the present pandemic and future epidemics. DDX3X helicase is a host factor required for viral replication. Selective inhibitors have been identified and developed into broad-spectrum antivirals active against emerging pathogens, including SARS-CoV-2 and most importantly against drug-resistant strains. This perspective describes the inhibitors identified in the last years, highlighting their therapeutic potential as innovative broad-spectrum antivirals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.2c00755 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.
View Article and Find Full Text PDFRev Bras Enferm
January 2025
Universidade Federal de Santa Catarina. Florianópolis, Santa Catarina, Brazil.
Objective: To characterize nursing care management strategies for addressing the COVID-19 pandemic.
Method: A descriptive, qualitative study conducted with 22 nurse professionals at a University Hospital in Southern Brazil. Data collection through interviews in June and August 2021, analyzed according to Bardin's Content Analysis and the theoretical framework of complex thinking.
PLoS One
January 2025
Department of Pharmaceutical Biotechnology and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
Bovine mastitis is a considerable challenge within the dairy industry, causing significant financial losses and threatening public health. The increased occurrence of methicillin-resistant Staphylococcus aureus (MRSA) has provoked difficulties in managing bovine mastitis. Bacteriophage therapy presents a novel treatment strategy to combat MRSA infections, emerging as a possible substitute for antibiotics.
View Article and Find Full Text PDFEur Biophys J
January 2025
Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
Compared to fluorescence, second harmonic generation (SHG) has recently emerged as an excellent signal for imaging probes due to its unmatched advantages in terms of no photobleaching, no phototoxicity, no signal saturation, as well as the superior imaging accuracy with excellent avoidance of background noise. Existing SHG probes are constructed from heavy metals and are cellular exogenous, presenting with high cytotoxicity, difficult cellular uptake, and the limitation of non-heritability. We, therefore, initially propose an innovative gene-encoded bioprotein SHG probe derived from Autographa californica nuclear polyhedrosis virus (AcMNPV) polyhedrin.
View Article and Find Full Text PDFElife
January 2025
Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.
Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!