A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microneedles assisted controlled and improved transdermal delivery of high molecular drugs via forming depot thermoresponsive poloxamers gels in skin microchannels. | LitMetric

Skin is considered as an attractive route for variety of drug molecule administration. However, it is proved to be the main physical barrier for drug flux owing to their poor permeability and low bioavailability across layer. In the current study, novel approach has been used to enhance transdermal delivery via microporation through combination of poloxamers gels and microneedles (MNs) arrays. The phase transition of poloxamers at various concentrations from sol-gel was evaluated using AR2000 rheometer to confirm MNs-assisted forming depots. Temperature test confirmed gelation between 32 and 37 °C. Curcumin was loaded in poloxamer formulations at variable concentrations and its effect showed reduction in critical gelation temperature (CGT) owing to its hydrophobic nature. Microneedle arrays (600 µm) prepared from Gantrez S-97, PEG10000 and gelatin B using (19 × 19) laser-engineered silicone micromoulds showed high mechanical stability investigated via Texture analyzer. From dissolution profile, gelatin 15% w/w based MNs displayed quicker dissolution rate in comparison to PG10000. VivoSight OCT scanner and dye tracking confirmed that PG10000 MNs arrays pierced SC layer, infiltrate the epidermis and goes to dermis layer. From permeation, it was concluded that 20% w/w PF127 gel formulations containing (0.1% and 0.3%) curcumin displayed high curcumin permeation for comparatively longer time through microporated skin samples in comparison to non-microporated skin. The curcumin distribution in skin tissues with higher florescence intensity was noted in MNs treated skin samples by confocal microscopy. FTIR confirmed the structure formation of fabricated MNs, while TGA showed dry, brittle and rigid nature of gelatin MNs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2022.2107662DOI Listing

Publication Analysis

Top Keywords

transdermal delivery
8
poloxamers gels
8
mns arrays
8
skin samples
8
skin
6
mns
6
microneedles assisted
4
assisted controlled
4
controlled improved
4
improved transdermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!