Introduction to the Collection: Climate Change, Insect Pests, and Beneficial Arthropods in Production Systems.

J Econ Entomol

USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA, USA.

Published: October 2022

Climate change is expected to alter pressure from insect pests and the abundance and effectiveness of insect pollinators across diverse agriculture and forestry systems. In response to warming, insects are undergoing or are projected to undergo shifts in their geographic ranges, voltinism, abundance, and phenology. Drivers include direct effects on the focal insects and indirect effects mediated by their interactions with species at higher or lower trophic levels. These climate-driven effects are complex and variable, sometimes increasing pest pressure or reducing pollination and sometimes with opposite effects depending on climatic baseline conditions and the interplay of these drivers. This special collection includes several papers illustrative of these biological effects on pests and pollinators. In addition, in response to or anticipating climate change, producers are modifying production systems by introducing more or different crops into rotations or as cover crops or intercrops or changing crop varieties, with potentially substantial effects on associated insect communities, an aspect of climate change that is relatively understudied. This collection includes several papers illustrating these indirect production system-level effects. Together, biological and management-related effects on insects comprise the necessary scope for anticipating and responding to the effects of climate change on insects in agriculture and forest systems.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toac107DOI Listing

Publication Analysis

Top Keywords

climate change
20
effects
9
insect pests
8
production systems
8
collection includes
8
includes papers
8
climate
5
change
5
introduction collection
4
collection climate
4

Similar Publications

Frontline Clinic Administrator Perspectives on Extreme Weather Events, Clinic Operations, and Climate Resilience.

J Ambul Care Manage

January 2025

Author Affiliations: Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts (Drs Wiskel and Dresser); Harvard T.H. Chan School of Public Health Center for Climate, Health, and the Global Environment, Boston, Massachusetts (Drs Wiskel and Dresser); Americares, Stamford, Connecticut (Mr Matthews-Trigg, Ms Stevens, and Dr Miles); and Harvard Medical School, Boston, Massachusetts (Drs Wiskel, Dresser, and Bernstein).

Climate-sensitive extreme weather events are increasingly impacting frontline clinic operations. We conducted a national, cross-sectional survey of 284 self-identified administrators and other staff at frontline clinics determining their attitudes toward climate change and the impacts, resilience, and preparedness of clinics for extreme weather events. Most respondents (80.

View Article and Find Full Text PDF

Microbiome-animal host symbioses are ubiquitous in nature. Animal-associated microbiomes can play a crucial role in host physiology, health and resilience to environmental stressors. As climate change drives rising global temperatures and increases the frequency of thermal extremes, microbiomes are emerging as a new frontier in buffering vulnerable animals against temperature fluctuations.

View Article and Find Full Text PDF

Injecting CO into deep geological formations can be an effective carbon removal and storage technology to mitigate global climate change. Interaction of injected CO with rock formations changes pH and hydrochemistry within the deep injection zone (> 800 m depth). However, cap rocks and multiple tight aquitards typically act as barriers to protect the shallow aquifer from changes in the injection zone.

View Article and Find Full Text PDF

Impact of a lagoon with high anthropic activity on a World Heritage Site.

Environ Monit Assess

January 2025

Department of Earth Science, University of Bizerte-FSB, University of Carthage, 7120, Bizerte, Tunisia.

The Ichkeul-Bizerte Lagoon Complex (IBLC), a critical ecosystem for local biodiversity, faces a pressing threat due to climate change and severe pollution. Despite past conservation efforts, pollution persists, particularly in the Bizerte Lagoon. This study investigated the impact of water dynamics and climatic conditions on heavy metal contamination in the IBLC's sediments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!