is a medicinal plant recognised for its anticancer properties. We previously discovered that the extract had the most potent inhibitory effect on MCF7 breast cancer cell and significantly induced apoptosis. However, there is a scarcity of studies demonstrating the molecular interactions of -derived chemical compounds associated with apoptosis-related proteins. Therefore, the objective of this study was to determine the potential chemical compounds found in the extract and examine their interactions with the targeted apoptotic proteins using molecular docking and molecular dynamic simulations. To address this objective, the compounds found in the SF2 extract of were analysed using Gas Chromatography-Mass Spectrometry (GC-MS). The molecular interaction of the compounds with the targeted apoptotic proteins were determined using molecular docking and molecular dynamic simulations. GC-MS analysis revealed a total of 32 compounds in the SF2 extract. Molecular docking analysis showed that compound β-amyrenol had the highest binding affinity for MDM2-P53 (-7.26 kcal/mol), BCL2 (-11.14 kcal/mol), MCL1-BAX (-6.42 kcal/mol), MCL1-BID (-6.91 kcal/mol), and caspase-9 (-12.54 kcal/mol), whereas campesterol had the highest binding affinity for caspase-8 (-10.11 kcal/mol) and caspase-3 (-10.14 kcal/mol). These selected compounds were subjected to molecular dynamic simulation at 310 K for 100 ns. The results showed that the selected protein-ligand conformation complexes were stable, compact, and did not alter much when compared to the protein references. The findings indicate that β-amyrenol and campesterol are potentially significant compounds that might provide insight into the molecular interactions of the compounds with the apoptosis-related proteins.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2101530DOI Listing

Publication Analysis

Top Keywords

molecular docking
16
molecular dynamic
16
docking molecular
12
dynamic simulations
12
molecular
11
compounds
9
compounds extract
8
gas chromatography-mass
8
chromatography-mass spectrometry
8
molecular interactions
8

Similar Publications

Based on molecular networking-guided isolation, 15 previously undescribed hydrogenated phenanthrene glycosides, including eight hexahydro-phenanthrenone glycosides, four tetrahydro-phenanthrenone glycosides, one dihydro-phenanthrenol glycoside, two dimers, and two known dihydrophenanthrene glycosides, were isolated from W.T.Wang, a popular regional edible vegetable at the northwest region of Vietnam.

View Article and Find Full Text PDF

The apoptosome, a critical protein complex in apoptosis regulation, relies on intricate interactions between its components, particularly the proteins containing the Caspase Activation and Recruitment Domain (CARD). This work presents a thorough computational analysis of the stability and specificity of CARD-CARD interactions within the apoptosome. Departing from available crystal structures, we identify important residues for the interaction between the CARD domains of Apaf-1 and Caspase-9.

View Article and Find Full Text PDF

An In Silico Approach to Uncover Selective JAK1 Inhibitors for Breast Cancer from Life Chemicals Database.

Appl Biochem Biotechnol

January 2025

Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.

JAK1, a key regulator of multiple oncogenic pathways, is a sought-out target, and its expression in immune cells and tumour-infiltrating lymphocytes (TILs) is associated with a favorable prognosis in breast cancer. JAK1 activates IL-6 via ERBB2 receptor tyrosine kinase signalling and promotes metastatic cancer and STAT3 activation in breast cancer cells. Hence, targeting JAK1 in breast cancer is being explored as a potential therapeutic strategy.

View Article and Find Full Text PDF

Traditionally, Bidens pilosa L. is an edible herb utilized for various ailments. The study accomplished a complete analysis of B.

View Article and Find Full Text PDF

Pyruvate Kinase-Based Novel 2-Thiazol-2-yl-1,3,4-oxadiazoles Discovery as Fungicidal Highly Active Leads.

J Agric Food Chem

January 2025

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.

To discover novel inhibitors of pyruvate kinase (PK) as fungicidal candidates, a series of 2-thiazol-2-yl-1,3,4-oxadiazole derivatives were designed by a prediction model with PK (RsPK) as a protein target and as a ligand. Fungicidal screening indicated that , , , , , , , and exhibited equal or higher activity compared to against , , or . To our surprise, showed comparable activity to flutriafol with an EC of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!