The human sensorimotor cortex has multiple subregions showing functional commonalities and differences, likely attributable to their connectivity profiles. However, the molecular substrates underlying such connectivity profiles are unclear. Here, transcriptome-neuroimaging spatial correlation analyses were performed between transcriptomic data from the Allen human brain atlas and resting-state functional connectivity (rsFC) of 24 fine-grained sensorimotor subregions from 793 healthy subjects. Results showed that rsFC of six sensorimotor subregions were associated with expression measures of six gene sets that were specifically expressed in brain tissue. These sensorimotor subregions could be classified into the polygenic- and oligogenic-modulated subregions, whose rsFC were related to gene sets diverging on their numbers (hundreds vs. dozens) and functional characteristics. First, the former were specifically expressed in multiple types of neurons and immune cells, yet the latter were not specifically expressed in any cortical cell types. Second, the former were preferentially expressed during the middle and late stages of cortical development, while the latter showed no preferential expression during any stages. Third, the former were prone to be enriched for general biological functions and pathways, but the latter for specialized biological functions and pathways. Fourth, the former were enriched for neuropsychiatric disorders, whereas this enrichment was absent for the latter. Finally, although the identified genes were commonly associated with sensorimotor behavioral processes, the polygenic-modulated subregions associated genes were additionally related to vision and dementia. These findings may advance our understanding of the functional homogeneity and heterogeneity of the human sensorimotor cortex from the perspective of underlying genetic architecture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704778 | PMC |
http://dx.doi.org/10.1002/hbm.26031 | DOI Listing |
Sci Rep
January 2025
Department of Information Technology, Faculty of Computers and Information, Assiut University, Assiut, Assiut, 71515, Egypt.
Fifth-generation (5G) communication technologies, such as millimeter wave communication, massive multiple-input-multiple-output and non-orthogonal-multiple-access (NOMA) are playing a pivotal role in promoting the modern applications of the Internet-of-Things. Using non-orthogonal resource allocation, NOMA can increase spectrum efficiency and achieve wide connectivity with low transmission delay and signaling cost. Despite the high potential of NOMA in 5G communications, NOMA is susceptible to a pilot contamination attack (PCA), in which an attacker resents the same pilot signals as authorized users.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India; Centre for Theoretical and Computational Chemistry, St Berchmans College (Autonomous), Changanassery, Kerala 686101, India. Electronic address:
In this study, three novel derivatives of benzo[b]thiophene-2-carbaldehyde (BTAP1, BTAP2, and BTAP3) were successfully synthesized and comprehensively characterized using spectroscopic techniques including FTIR, UV-VIS, HNMR, and CNMR. Thermal analysis through TGA and DTA demonstrated remarkable thermal stability with a maximum threshold at 270 °C. Spectroscopic investigations revealed π → π* transitions in all compounds, attributed to the conjugated system comprising benzothiophene rings connected to bromophenyl/ aminophenyl/phenol rings via α, β-unsaturated ketone bridges.
View Article and Find Full Text PDFNicotine Tob Res
January 2025
Faculty of Public Health & Policy, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, United Kingdom.
Phys Chem Chem Phys
January 2025
Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
In our previous work, we studied the thermodynamics of two cases of intercompartmental transport through a carbon nanotube: one involving water molecules and the other involving nonpolar molecules. Free energy calculations indicate that transporting water molecules from one compartment to another a narrow channel is impossible, whereas for nonpolar molecules, only approximately half can be transported. Therefore, the interaction strength between transported molecules significantly affects molecular transport.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Materials Science, Solar Energy Research Center MIB-SOLAR and INSTM Milano-Bicocca Research Unit University of Milano-Bicocca,Via Cozzi 55, Milano, I-20125, Italy.
The rapid proliferation of internet-connected devices has transformed our daily habits prompting a shift towards greater sustainability in renewable energy for indoor applications. Among the various technologies available for obtaining energy in indoor conditions, Dye-Sensitized Solar Cells (DSSCs) stand out as the most promising due to their ability to efficiently convert ambient light into usable electricity. This study explores how the optimal matching of the UV-Vis absorption spectra of dyes commonly used in DSSCs with the emission profiles of indoor lamps allows for the enhanced efficiency of DSSC under indoor lighting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!