Fungal infections cause high mortality in immunocompromised individuals, which has emerged as a significant threat to human health. The efforts devoted to the development of antifungal agents targeting the cell wall polysaccharides have been hindered by our incomplete picture of the assembly and remodeling of fungal cell walls. High-resolution solid-state nuclear magnetic resonance (ss NMR) studies have substantially revised our understanding of the polymorphic structure of polysaccharides and the nanoscale organization of cell walls in and multiple other fungi. However, this approach requires C/N-enrichment of the sample being studied, severely restricting its application. Here we employ the dynamic nuclear polarization (DNP) technique to compare the unlabeled cell wall materials of and prepared using both liquid and solid media. For each fungus, we have identified a highly conserved carbohydrate core for the cell walls of conidia and mycelia, and from liquid and solid cultures. Using samples prepared in different media, the recently identified function of α-glucan, which packs with chitin to form the mechanical centers, has been confirmed through conventional ss NMR measurements of polymer dynamics. These timely efforts not only validate the structural principles recently discovered for cell walls in different morphological stages, but also open up the possibility of extending the current investigation to other fungal materials and cellular systems that are challenging to label.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310124PMC
http://dx.doi.org/10.1016/j.yjsbx.2022.100070DOI Listing

Publication Analysis

Top Keywords

cell walls
20
fungal cell
8
cell wall
8
liquid solid
8
cell
7
walls
5
solid-state nmr
4
nmr analysis
4
analysis unlabeled
4
fungal
4

Similar Publications

Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.

View Article and Find Full Text PDF

Background: Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality in the western world despite the success of lipid lowering therapies, highlighting the need for novel lipid-independent therapeutic strategies. Genome-wide association studies (GWAS) have identified numerous genes associated with ASCVD that function in the vessel wall, suggesting that vascular cells mediate ASCVD, and that the genes and pathways essential for this vascular cell function may be novel therapeutic targets for the treatment of ASCVD. Furthermore, some of these implicated genes appear to function in the adventitial layer of the vasculature, suggesting these cells are able to potentiate ASCVD.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

Malignant transformation is a rare complication of ovarian mature cystic teratoma that occurs in 1-3% of cases. We herein report a case of squamous cell carcinoma originating from mature cystic teratoma of the ovary diagnosed 10 years after initial tumor detection. A 69-year-old woman presented to the Department of Internal Medicine with a seven-month history of abdominal fullness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!