Zidebactam restores sulbactam susceptibility against carbapenem-resistant isolates.

Front Cell Infect Microbiol

Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States.

Published: July 2022

Carbapenems are commonly used to treat infections caused by multidrug-resistant (MDR) bacteria. Unfortunately, carbapenem resistance is increasingly reported in many gram-negative bacteria, especially . Diazabicyclooctane (DBO) β-lactamase inhibitors, such as avibactam (AVI), when combined with sulbactam successfully restore sulbactam susceptibility against certain carbapenem-resistant (CRAB) isolates. In the present study, we tested zidebactam, a novel DBO with an additional mechanism of action, in combination with sulbactam against CRAB isolates, including strains that exhibited resistance against sulbactam/avibactam combination. A panel of 43 geographically and genetically distinct CRAB isolates recovered from different hospitals and containing different mechanisms of resistance were included in the present study. We also tested three reference strains (AB0057, AB5075, and AYE). Minimum inhibitory concentrations (MICs) for sulbactam (range 0.12-512 mg/l) and sulbactam plus 4 mg/l zidebactam were performed using microdilution according to CLSI Standards. A decrease ≥2 dilutions in sulbactam MICs was observed in 84% of the isolates when tested in combination with zidebactam. The sulbactam/zidebactam combination was able to restore sulbactam susceptibility in 91% of the isolates, including isolates that were resistant to sulbactam/avibactam combination. These data encouraged us to further explore sulbactam/zidebactam in other experimental models especially against CRAB isolates resistant to other DBOs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309244PMC
http://dx.doi.org/10.3389/fcimb.2022.918868DOI Listing

Publication Analysis

Top Keywords

crab isolates
16
sulbactam susceptibility
12
sulbactam
8
susceptibility carbapenem-resistant
8
isolates
8
restore sulbactam
8
study tested
8
isolates including
8
sulbactam/avibactam combination
8
isolates resistant
8

Similar Publications

Molecular epidemiology of carbapenem-resistant group in Taiwan.

mSphere

December 2024

Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.

particularly the group, is a major cause of nosocomial infections, and carbapenem-resistant spp. are important human pathogens. We collected 492 spp.

View Article and Find Full Text PDF

is a significant public health concern due to the emergence of antibiotic-resistant strains. Cefiderocol (FDC), a novel siderophore cephalosporin, has shown promise as a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of -acquired FDC-resistant strains highlights the need for advanced tools to identify resistance-associated genomic mutations and address the challenges of FDC susceptibility testing.

View Article and Find Full Text PDF
Article Synopsis
  • Acinetobacter baumannii, especially the carbapenem-resistant strains (CRAB), is a critical pathogen linked to antimicrobial resistance (AMR) and is prioritized by the WHO.
  • Phage therapy is being explored as a potential treatment for CRAB infections due to increasing resistance to conventional antibiotics.
  • A newly isolated lytic phage, vAbaIN10, exhibits effective lytic activity against CRAB in various conditions and shows promise in advancing treatment options for multidrug-resistant infections.
View Article and Find Full Text PDF

Unlabelled: Carbapenem-resistant spp. pose a significant challenge in clinical settings due to limited treatment options for nosocomial infections. Carbapenem-hydrolyzing class D beta-lactamases are the primary cause for carbapenem resistance, while metallo-beta-lactamases (MBLs) New Delhi metallo beta-lactamase (NDM) and imipenemase (IMP) also contribute.

View Article and Find Full Text PDF

Therapeutic options for carbapenem-resistant Acinetobacter baumannii (CA-AB) are quite limited. Cefiderocol, a novel siderophore cephalosporin, has shown potent in vitro activity against CR-AB, and new tetracycline analogues such as eravacycline and omadacycline have been available in recent years. However, the synergism of cefiderocol with tetracycline analogues against CR-AB has not been well investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!