Establishing Sterility Assurance for 29669 Spores Under High Heat Exposure.

Front Microbiol

Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection, Pasadena, CA, United States.

Published: July 2022

The ever-increasing complexity in critical spacecraft hardware and materials has led to the development of new microbial reduction procedures as well as to changes in established processes such as heat microbial reduction (HMR). In the space biology field of Planetary Protection, 500°C for 0.5 s is the current HMR recommendation to reduce microorganisms from flight hardware. However, more studies are needed to effectively determine the microbial reduction capability of high-temperature (more than 200°C), short-duration (under 30 s) heat exposures. One of the many recent microbial reduction bioengineering research avenues harnesses electromagnetic energy for microbial reduction, with previous investigations demonstrating that infrared heaters are capable of the short temperature ramp time required for rapid heating investigations above 200°C. Therefore, this study employed a 6 kW infrared heater to determine the survivability of heat resistant 29669 to high-temperature, short-duration infrared temperatures. While 29669 spores can survive microbial heat reduction processes above 200°C, we found evidence suggesting that the 500°C for 0.5 s temperature sterilization specification for Planetary Protection should be updated. This research presents spore survival data and a corresponding model pointing to a re-evaluation of the recommended HMR exposure of 500°C for 0.5 s, while simultaneously meeting requirements on the forward biological contamination of solar system bodies and opening up design possibilities for future spacecraft hardware.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309537PMC
http://dx.doi.org/10.3389/fmicb.2022.909997DOI Listing

Publication Analysis

Top Keywords

microbial reduction
20
29669 spores
8
spacecraft hardware
8
planetary protection
8
microbial
6
reduction
6
heat
5
establishing sterility
4
sterility assurance
4
assurance 29669
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!