Malaria represents a significant public health burden to populations living in developing countries. The disease takes a relevant toll on pregnant women, who are more prone to developing severe clinical manifestations. Inflammation triggered in response to sequestration inside the placenta leads to physiological and structural changes in the organ, reflecting locally disrupted homeostasis. Altogether, these events have been associated with poor gestational outcomes, such as intrauterine growth restriction and premature delivery, contributing to the parturition of thousands of African children with low birth weight. Despite significant advances in the field, the molecular mechanisms that govern these outcomes are still poorly understood. Herein, we discuss the idea of how some housekeeping molecular mechanisms, such as those related to autophagy, might be intertwined with the outcomes of malaria in pregnancy. We contextualize previous findings suggesting that placental autophagy is dysregulated in -infected pregnant women with complementary research describing the importance of autophagy in healthy pregnancies. Since the functional role of autophagy in pregnancy outcomes is still unclear, we hypothesize that autophagy might be essential for circumventing inflammation-induced stress in the placenta, acting as a cytoprotective mechanism that attempts to ensure local homeostasis and better gestational prognosis in women with malaria in pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309427 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.931034 | DOI Listing |
Int J Mol Sci
December 2024
Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40255 Duesseldorf, Germany.
To date, very little is known about how apoptosis and autophagy affect human endometrial stromal cells (ESCs), particularly how these processes might determine the depth of implantation in humans. Before investigating how apoptosis and autophagy might modulate the implantation process in an infertile population, it is necessary to clarify how these processes are regulated in healthy individuals. This study examined the protein expression related to apoptosis and autophagy in primary ESCs from fertile women, particularly in the context of decidualization and embryo contact, using Western blot analysis.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China. Electronic address:
Carbon black nanoparticles (CBNPs) are ubiquitous in our daily ambient environment, either resulting from tobacco combustion or constituting the core of PM. Despite the potential risk of trafficking CBNPs to the fetus, the underlying toxicity of nano-sized carbon black particles in the placenta remains unambiguous. Pregnant C57BL/6 mice received intratracheal instillation of 30 nm or 120 nm CBNPs.
View Article and Find Full Text PDFFree Radic Res
January 2025
Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Department of Plant & Biomaterials Science, Gyeongsang National University, Jinju 52725, Republic of Korea; Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea. Electronic address:
Dibutyl phthalate is a chemical commonly used as a plasticizer in the production of daily necessaries, such as cosmetics and toys. Although several toxic effects of dibutyl phthalate have been confirmed, those related to pregnancy are unknown. Trophoblasts are critical for fetal and placental development, and trophoblast damage may cause preeclampsia.
View Article and Find Full Text PDFiScience
December 2024
Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!