Climate change is a major cause of the world's food security problems, and soil salinity is a severe hazard for a variety of crops. The exploitation of endophytic fungi that are known to have a positive association with plant roots is preferred for improving plant growth, yield, and overall performance under salt stress. The current study thus rationalized to address how salt stress affected the growth, biochemical properties, antioxidant capacity, endogenous indole-3-acetic acid (IAA), and the ionic status of maize associated with endophytic fungus (). According to the findings, salt stress reduced chlorophyll a and b, total chlorophyll, total protein, sugars, lipids, and endogenous IAA levels. Enhanced values of chlorophyll a/b ratio, carotenoids, secondary metabolites (phenol, flavonoids, and tannins), antioxidant enzyme activity (catalase, ascorbate peroxidase), proline, and lipid peroxidation were noticed in maize plants under salt stress. Increased ionic content of Na, Cl, Na/K, and Na/Ca ratio, as well as decreased Ca, K, Mg, N, and P contents, were also found in salt-stressed maize plants. In comparison to the non-saline medium, endophytic association promoted the antioxidant enzyme activities (798.7 U/g protein; catalase activity, 106 U/g protein; ascorbate peroxidase activity), IAA content (3.47 mg/g FW), and phenolics and flavonoids (88 and 1.68 μg/g FW, respectively), and decreased MDA content (0.016 nmol/g FW), Na ion content (18 mg/g dry weight), Cl ion (16.6 mg/g dry weight), and Na/K (0.78) and Na/Ca (1.79) ratios, in maize plants under salt stress, whereas Ca, K, Mg, N, and P contents were increased in maize plants associated with under salt stress. Current research exposed the role of as an effective natural salt stress reducer and maize growth promoter; hence, it can be used as a biofertilizer to ameliorate salt stress tolerance in crops along with better growth performance in saline regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311153 | PMC |
http://dx.doi.org/10.3389/fpls.2022.890565 | DOI Listing |
BMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
Nano-biochar considers a versatile and valuable sorbent to enhance plant productivity by improving soil environment and emerged as a novel solution for environmental remediation and sustainable agriculture in modern era. In this study, roles of foliar applied nanobiochar colloidal solution (NBS) on salt stressed tomato plants were investigated. For this purpose, NBS was applied (0%, 1% 3% and 5%) on two groups of plants (control 0 mM and salt stress 60 mM).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agriculture, Guangxi University, Nanning 530004, China. Electronic address:
Salt stress severely affects the growth and development of tomato. Strigolactones (SLs) and DNA methylation have been shown to be involved in the growth and development and response to salt stress in tomato. However, the regulation of SLs on DNA methylation in tomato under salt stress remains unclear.
View Article and Find Full Text PDFOcul Surf
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:
Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.
Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!