Near-field high-resolution synthetic aperture radar (SAR) imaging is mostly accompanied by a large number of data acquisition processes, which increases the system complexity and device cost. According to extensive reports, reducing the number of sampling points of a radar in space can greatly reduce the amount of data. However, when spatial sparse sampling is carried out, a ghost normally appears in the imaging results due to the high side lobes generated in the azimuth. To address this issue, a technique is introduced in this paper to recover the blank data through amplitude and phase compensation based on the correlation between sparse array sampling through adjacent points. Firstly, the data sampled by the sparse array is compressed in the range direction to obtain the expected data slices in the same range direction. Then, the blank element of the slice is compensated for with amplitude and phase to obtain full aperture data. Finally, the matched filter method is used to aid in the image reconstruction. The simulation results verified that the method proposed in this paper can effectively reconstruct the image under two kinds of sparse sampling conditions. Thus, a simple single-input single-output (SISO) synthetic aperture radar imaging test bench is established. Compared with the results of a 1 mm (1/4 λ) sampling interval, the quality of the reconstructed image under the condition of a 4 mm (1 λ) sampling interval still stands using our proposed method. Demonstrated by the experiment, the normalized root-mean-square error(NMSE) is 5.75%. Additionally, when the spatial sampling points are sampled randomly with 30% of the full sampling condition, this method can also restore and reconstruct the image with high quality. Due to the decrease of sampling points, the data volume can be reduced, which is beneficial for improving the scanning speed and alleviating the pressure of data transmission for near-field high resolution SAR imaging systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330117 | PMC |
http://dx.doi.org/10.3390/s22155548 | DOI Listing |
Eur J Obstet Gynecol Reprod Biol
January 2025
Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China. Electronic address:
Objective: First trimester cervical angles for the prediction of spontaneous preterm birth (sPTB) remains unclear. The objective is to explore the potential value of first trimester cervical angles for the prediction of sPTB.
Study Design: This was a secondary analysis of data derived from a prospective cohort study for sPTB screening in singleton pregnancies at 11 + 0-13 + 6 weeks in women attending routine Down's syndrome screening at Prince of Wales Hospital, Hong Kong SAR, between June 2018 and July 2020.
Alzheimers Dement
January 2025
Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
Introduction: The link between overload brain iron and transcriptional/cellular signatures in Alzheimer's disease (AD) remains inconclusive.
Methods: Iron deposition in 41 cortical and subcortical regions of 30 AD patients and 26 healthy controls (HCs) was measured using quantitative susceptibility mapping (QSM). The expression of 15,633 genes was estimated in the same regions using transcriptomic data from the Allen Human Brain Atlas (AHBA).
Extremophiles
January 2025
Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
To fish-out novel salt-tolerance genes, metagenomic DNA of moderately saline sediments of India's largest hypersaline Sambhar Lake was cloned in fosmid. Two functionally-picked clones helped the Escherichia coli host to tolerate 0.6 M NaCl.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, Imperial College London Molecular Sciences Research Hub, 82 Wood Lane, White City Campus London W12 0BZ UK
The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!