Palladium Supported on Porous Organic Polymer as Heterogeneous and Recyclable Catalyst for Cross Coupling Reaction.

Molecules

College of Chemistry and Chemical Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China.

Published: July 2022

Palladium immobilized on an amide and ether functionalized porous organic polymer (Pd@AEPOP) is reported to be an effective heterogeneous catalyst for the Heck cross-coupling reaction of aryl iodides with styrene for the synthesis of diphenylethene derivatives. Excellent yields can be obtained using a 0.8 mol% Pd catalyst loading under the optimized reaction condition. The heterogeneous Pd@AEPOP catalyst can also be applied on the Suzuki reaction and the reduction of nitroarene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332046PMC
http://dx.doi.org/10.3390/molecules27154777DOI Listing

Publication Analysis

Top Keywords

porous organic
8
organic polymer
8
palladium supported
4
supported porous
4
polymer heterogeneous
4
heterogeneous recyclable
4
catalyst
4
recyclable catalyst
4
catalyst cross
4
cross coupling
4

Similar Publications

Tailoring rhodium-based metal-organic layers for parahydrogen-induced polarization: achieving 20% polarization of H in liquid phase.

Natl Sci Rev

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, School of Electronic Science and Engineering, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Heterogeneous catalysts for parahydrogen-induced polarization (HET-PHIP) would be useful for producing highly sensitive contrasting agents for magnetic resonance imaging (MRI) in the liquid phase, as they can be removed by simple filtration. Although homogeneous hydrogenation catalysts are highly efficient for PHIP, their sensitivity decreases when anchored on porous supports due to slow substrate diffusion to the active sites and rapid depolarization within the channels. To address this challenge, we explored 2D metal-organic layers (MOLs) as supports for active Rh complexes with diverse phosphine ligands and tunable hydrogenation activities, taking advantage of the accessible active sites and chemical adaptability of the MOLs.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are porous, crystalline materials with high surface area, adjustable porosity, and structural tunability, making them ideal for diverse applications. However, traditional experimental and computational methods have limited scalability and interpretability, hindering effective exploration of MOF structure-property relationships. To address these challenges, we introduce, for the first time, a category-specific topological learning (CSTL), which combines algebraic topology with chemical insights for robust property prediction.

View Article and Find Full Text PDF

Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells.

ACS Nano

January 2025

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality.

View Article and Find Full Text PDF

Evaporation-Induced Reticular Growth of UiO-66_NH in Chitosan Films: Adsorption of Iodine.

ACS Appl Mater Interfaces

January 2025

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.

Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.

View Article and Find Full Text PDF

Porous Materials for Early Diagnosis of Neurodegenerative Diseases.

Adv Healthc Mater

January 2025

Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077, India.

Neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease, present formidable challenges in modern medicine due to their complex pathologies and the absence of curative treatments. Despite advances in symptomatic management, early diagnosis remains essential for mitigating disease progression and improving patient outcomes. Traditional diagnostic methods, such as MRI, PET, and cerebrospinal fluid biomarker analysis, are often inadequate for the early detection of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!