Ibrutinib (IBR) is an oral anticancer medication that inhibits Bruton tyrosine kinase irreversibly. Due to the high risk of adverse effects and its pharmacokinetic variability, the safe and effective use of IBR is expected to be facilitated by precision dosing. Delivering suitable clinical laboratory information on IBR is a prerequisite of constructing fit-for-purpose population and individual pharmacokinetic models. The validation of a dedicated high-throughput method using liquid chromatography-mass spectrometry is presented for the simultaneous analysis of IBR and its pharmacologically active metabolite dihydrodiol ibrutinib (DIB) in human plasma. The 6 h benchtop stability of IBR, DIB, and the active moiety (IBR+DIB) was assessed in whole blood and in plasma to identify any risk of degradation before samples reach the laboratory. In addition, four regression algorithms were tested to determine the optimal assay error equations of IBR, DIB, and the active moiety, which are essential for the correct estimation of the error of their future nonparametric pharmacokinetic models. The noncompartmental pharmacokinetic properties of IBR and the active moiety were evaluated in three patients diagnosed with chronic lymphocytic leukemia to provide a proof of concept. The presented methodology allows clinical laboratories to efficiently support pharmacokinetics-based precision pharmacotherapy with IBR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331678PMC
http://dx.doi.org/10.3390/molecules27154766DOI Listing

Publication Analysis

Top Keywords

active moiety
12
clinical laboratory
8
dihydrodiol ibrutinib
8
ibr
8
pharmacokinetic models
8
ibr dib
8
dib active
8
high-throughput clinical
4
laboratory methodology
4
methodology therapeutic
4

Similar Publications

Herein we report the synthesis of a novel di-O-acylated DNJ derivative, conceived to study whether iminosugar derivatization with a lipophilic acyl moiety could positively affect its antibacterial properties. The well-known PS-TPP/I/ImH activating system was used to readily install the acyl chains on the iminosugar, leading to the desired compound in high yield. Biological assays revealed that a di-O-lauroyl DNJ derivative enhanced the antibacterial effect of gentamicin and amikacin against S.

View Article and Find Full Text PDF

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!