Brain damage is the major cause of permanent disability and it is particularly relevant in the elderly. While most studies focused on the immediate phase of neuronal loss upon injury, much less is known about the process of axonal regeneration after damage. The development of new refined preclinical models to investigate neuronal regeneration and the recovery of brain tissue upon injury is a major unmet challenge. Here, we present a novel experimental paradigm in mice that entails the (i) tracing of cortico-callosal connections, (ii) a mechanical lesion of the motor cortex, (iii) the stereological and histological analysis of the damaged tissue, and (iv) the functional characterization of motor deficits. By combining conventional microscopy with semi-automated 3D reconstruction, this approach allows the analysis of fine subcellular structures, such as axonal terminals, with the tridimensional overview of the connectivity and tissue integrity around the lesioned area. Since this 3D reconstruction is performed in serial sections, multiple labeling can be performed by combining diverse histological markers. We provide an example of how this methodology can be used to study cellular interactions. Namely, we show the correlation between active microglial cells and the perineuronal nets that envelop parvalbumin interneurons. In conclusion, this novel experimental paradigm will contribute to a better understanding of the molecular and cellular interactions underpinning the process of cortical regeneration upon brain damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9368090 | PMC |
http://dx.doi.org/10.3390/ijms23158224 | DOI Listing |
J Tradit Complement Med
January 2025
Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, South Korea.
Background: Jeoryeong-tang (JRT) was first recorded in . It is composed of Polyporus Sclerotium, Poria, Asini Corii Colla, Alisma Rhizome, and Talcum at the same weight ratio. These medicinal materials are known for diuretic and hemostatic effects and have been traditionally used to treat kidney and bladder diseases.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Background And Aim: The NLRP3 inflammasome can be activated after intracerebral hemorrhage (ICH), triggering an inflammatory response in the brain. Chinese herbal medicine Zhongfeng Xingnao Prescription (ZFXN) is commonly used in China for intracerebral hemorrhage treatment. However, the underlying treatment mechanism of it is unclear.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112026, Taiwan.
Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.
View Article and Find Full Text PDFCan Med Educ J
December 2024
Department of Physical Medicine and Rehabilitation, Queen's University, Ontario, Canada.
Background: Resident-focused curricula that support competency acquisition in concussion care are currently lacking. We sought to fill this gap by developing and evaluating Spiral Integrated Curricula (SIC) using the cognitive constructivism paradigm and the Utilization-Focused Evaluation (UFE) framework. The evidence-based curricula consisted of academic half-days (AHDs) and clinics for first- and second-year family medicine residents.
View Article and Find Full Text PDFBMJ Open
December 2024
Centre for Rehabilitation and Ageing Research, University of Nottingham, Nottingham, UK.
Objective: To codesign and develop an intervention to promote participation and well-being in children and young people (CYP) with acquired brain injury (ABI) and family caregivers.
Design: A complex intervention development study including a scoping review, mixed-methods study, co-design workshop and theoretical modelling.
Setting: Community-dwelling participants in one geographical region of the UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!