We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (R), time to reach R, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure. Cu-MBGN without silica accelerated polymerisation, reduced light transmission, and had the highest DC (58.8 ± 0.9%) and R (9.8 ± 0.2%/s), but lower shrinkage (3 ± 0.05%) and similar PSS (0.89 ± 0.07 MPa) versus the inert reference (0.83 ± 0.13 MPa). Combined Cu-MBGN and silica slowed the R and achieved a similar DC but resulted in higher shrinkage. However, using a combined 5 wt.% Cu-MBGN and silica, the PSS resembled that of the inert reference. The synergistic action of 5 wt.% Cu-MBGN and silanised silica in combination with silanised barium glass resulted in a material with the highest likelihood for dental applications in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9332616 | PMC |
http://dx.doi.org/10.3390/ijms23158195 | DOI Listing |
Dent Mater
July 2024
Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
Int J Mol Sci
July 2022
Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (R), time to reach R, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure.
View Article and Find Full Text PDFMaterials (Basel)
May 2021
Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
Experimental dental resin composites incorporating copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) were designed to impart antibacterial and remineralizing properties. The study evaluated the influence of Cu-MBGN on the mechanical properties and photopolymerization of resin composites. Cu-MBGN were synthesized using a microemulsion-assisted sol-gel method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!