This study aims to produce green zinc oxide nanoparticles (ZnO-NPs) derived from red seaweed () and evaluate their potential to absorb Ismate violet 2R (IV2R) ions from an aqueous solution. UV-vis spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and a Brunauer-Emmett-Teller surface area analysis (BET) were used to analyze the structural, morphological, and optical features of the synthesized nanoparticles. The change in color of the chemical solution revealed the formation of zinc oxide nanoparticles. The FTIR examination confirmed the synthesis of both Zn and ZnO nanoparticle powder, with a BET surface area of 113.751 m g and an average pore size of 2.527 nm for the synthesized adsorbent. Furthermore, the maximum removal effectiveness of IV2R was 99% when 0.08 g ZnO-NPs was applied at a pH of 6, a temperature of 55 °C, and a contact time of 120 min. The dye adsorption capacity of the ZnO-NPs was 72.24 mg g. The adsorption process was also controlled by the Freundlich adsorption model and pseudo-second-order reaction kinetics. The adsorption of IV2R ions onto the ZnO-NPs could be represented as a nonideal and reversible sorption process of a nonuniform surface, according to Freundlich adsorption isotherms. In addition, the constant values of the model parameters were determined using various nonlinear regression error functions. Moreover, thermodynamic parameters such as entropy change, enthalpy change, and free energy change were investigated; the adsorption process was spontaneous and endothermic. The high capacity of the ZnO-NPs synthesized by red seaweed promotes them as promising substances for applications in water treatment for the removal of IV2R dye from aqueous systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330049PMC
http://dx.doi.org/10.3390/ma15155169DOI Listing

Publication Analysis

Top Keywords

zinc oxide
12
oxide nanoparticles
12
red seaweed
12
dye aqueous
8
aqueous solution
8
iv2r ions
8
surface area
8
capacity zno-nps
8
adsorption process
8
freundlich adsorption
8

Similar Publications

Effect of Irrigation Solution Temperature on Bioceramic Sealer Bond Strength.

Med Sci Monit

January 2025

Department of Endodontics, Faculty of Dentistry, Dicle University, Diyarbakir, Turkey.

BACKGROUND Different temperature conditions can affect the efficiency of irrigation solutions and consequently the ability of canal sealers to bond to root canal walls. The aim of this endodontic study was to evaluate the effect of irrigation solutions at different temperatures on the bond strength of a bioceramic-based root canal sealer. MATERIAL AND METHODS Root canal preparations were completed through irrigation with the following solutions: Group 1 was irrigated with 5 ml NaOCl (sodium hypochlorite) +5 ml EDTA (Ethylenediamine tetra-acetic acid) (22°C); Group 2 was irrigated with 5 ml NaOCl +5 ml EDTA (37°C); Group 3 was irrigated with 5 ml NaOCl +5 ml GA (Glycolic acid) (22°C); Group 4 was irrigated with 5 ml NaOCl +5 ml GA (37°C), Group 5 was irrigated with 20 ml Dual Rinse® HEDP (Etidronate) - NaOCl mixture (22°C); and Group 6 was irrigated with 20 ml of Dual Rinse® HEDP mixture (37°C).

View Article and Find Full Text PDF

Brucellosis is a highly contagious zoonotic bacterial disease. It has considerable negative consequences on the animal production industry worldwide. The objective of this study was to investigate the genetic and molecular variations in Shami goat susceptible to Brucella infection.

View Article and Find Full Text PDF

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

Background: Fascioliasis represents one of the most significant parasitic and foodborne zoonotic diseases in the world. Resistance to currently deployed human and veterinary flukicides is a growing health problem. Zinc oxide nanoparticles (ZnO-NPs) have developed enormous importance in nanomedicine.

View Article and Find Full Text PDF

Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!