The outer steel tube in a concrete-filled steel tubular (CFST) column confines the core concrete and improves the compressive strength of the core concrete. When there is a notch damage in the tube, the confinement effect may be affected. The confinement effects of the notched steel tube in rectangular CFST columns were systematically investigated by using numerical approaches. Refined three-dimensional finite element models with advanced concrete constitutive relations were established. With the verified finite element modeling method, full-sized square CFST columns with horizontal, vertical, or diagonal notches at different locations of the steel tube were simulated. Stress distributions and deformation modes of the steel tube and core concrete were analyzed. Columns with a horizontal notch at the plate center location displayed a higher axial strength reduction than those with vertical notches. A parametric study was performed to investigate the influences of concrete strengths, steel strengths, steel ratios, notch length to column width ratios, and notch angles on the compressive strengths of the rectangular CFST columns. A practical design formula was proposed based on the obtained results. The proposed formula could effectively predict the influences of different notches on the confinement effect in the notched CFST columns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331844PMC
http://dx.doi.org/10.3390/ma15155161DOI Listing

Publication Analysis

Top Keywords

steel tube
20
cfst columns
20
core concrete
12
steel
8
outer steel
8
square cfst
8
rectangular cfst
8
finite element
8
columns horizontal
8
strengths steel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!