Regular laser-induced periodic surface structures (LIPSS) were efficiently fabricated on indium tin oxide (ITO) films by femtosecond laser direct writing with a cylindrical lens. It was found that randomly distributed nanoparticles and high spatial frequency LIPSSs (HSFL) formed on the surface after a small number of cumulative incident laser pulses per spot, and regular low spatial frequency LIPSSs (LSFL) appeared when more laser pulses accumulated. The mechanism of the transition was studied by real-time absorptance measurement and theoretical simulation. Results show that the interference between incident laser and surface plasmon polaritons (SPPs) excited by random surface scatterers facilitates the formation of prototype LSFLs, which in turn enhances light absorption and SPP excitation following laser pulses. The effects of scanning velocity and laser fluence on LSFL quality were discussed in detail. Moreover, large-area extremely regular LSFL with a diameter of 30 mm were efficiently fabricated on an ITO film by femtosecond laser direct writing with the cylindrical lens. The fabricated LSFLs on the ITO film demonstrate vivid structural color. During LSFL processing, the decrease of ITO film thickness leads to the increase of near-infrared optical transmittance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329999PMC
http://dx.doi.org/10.3390/ma15155092DOI Listing

Publication Analysis

Top Keywords

efficiently fabricated
12
femtosecond laser
12
laser direct
12
direct writing
12
writing cylindrical
12
cylindrical lens
12
laser pulses
12
ito film
12
periodic surface
8
surface structures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!