TLR2 and TLR4 activity in monocytes and macrophages after exposure to amoxicillin, ciprofloxacin, doxycycline and erythromycin.

J Antimicrob Chemother

Immunoendocrinology, Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands.

Published: October 2022

Background: Antibiotics are used to treat bacterial infections but also impact immunity. This is usually attributed to antibiotic-induced dysbiosis of the microbiota, but antibiotics may have a direct effect on immune cells and immunity-associated receptors, such as Toll-like receptors (TLRs).

Objectives: To investigate whether antibiotics alter TLR2/1, TLR2/6 and TLR4 activity in immune cells.

Methods: We evaluated the effects of amoxicillin, ciprofloxacin, doxycycline and erythromycin on TLR2/1-, TLR2/6- and TLR4-induced NF-κB activation in THP1-XBlue™-MD2-CD14 cells. Furthermore, we studied TNF-α and IL-6 levels in THP-1-derived macrophages after exposure to these antibiotics and TLR ligands.

Results: Amoxicillin had no effect on any of the TLRs studied. However, ciprofloxacin reduced TLR2/1, TLR2/6 and TLR4 activity in THP1-XBlue™-MD2-CD14 cells and decreased TLR2/1-induced TNF-α and IL-6 in macrophages. Doxycycline reduced TLR2/6 and TLR4 activity in THP1-XBlue™-MD2-CD14 cells and TNF-α and IL-6 levels in response to TLR2/6 stimulation in macrophages. Erythromycin decreased TLR2/1 and TLR4 activity in THP1-XBlue™-MD2-CD14 cells without changes in TNF-α and IL-6 levels in macrophages. In addition, ciprofloxacin decreased the expression of TLR2 mRNA.

Conclusions: These results suggest that some antibiotics may attenuate TLR-dependent monocyte/macrophage responses and likely reduce bacterial clearance. The latter is particularly important in infections with AMR bacteria, where misprescribed antibiotics not only fail in control of AMR infections but might also weaken host defence mechanisms by limiting innate immune responses. Our data suggest that efforts should be made to prevent the deterioration of the immune response during and after antibiotic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616545PMC
http://dx.doi.org/10.1093/jac/dkac254DOI Listing

Publication Analysis

Top Keywords

tlr4 activity
20
thp1-xblue™-md2-cd14 cells
16
tnf-α il-6
16
tlr2/6 tlr4
12
il-6 levels
12
activity thp1-xblue™-md2-cd14
12
macrophages exposure
8
amoxicillin ciprofloxacin
8
ciprofloxacin doxycycline
8
doxycycline erythromycin
8

Similar Publications

The Mucilage From the Opuntia ficus-indica (L.) Mill. Cladodes Plays an Anti-Inflammatory Role in the LPS-Stimulated HepG2 Cells: A Combined In Vitro and In Silico Approach.

Mol Nutr Food Res

January 2025

Department for Sustainability, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Roma, Italy.

The effect of a mucilage extracted from Opuntia ficus-indica (L.) Mill (OFI) cladodes was tested in lipopolysaccharide (LPS)-challenged HepG2 hepatocarcinoma cells, through a combined in vitro-in silico approach. The OFI mucilage was characterized by gas chromatography-mass spectrometry and liquid chromatography-high resolution mass spectrometry.

View Article and Find Full Text PDF

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

The current study isolated a homogeneous polysaccharide (AP) with a molecular weight of 7.9 kDa from the pomace of Fuji apples. AP was found to consists of rhamnose, galactose, arabinose, glucose, and galacturonic acid in a ratio of 4.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

[Research advances in the mechanism of Toll-like receptor 4 mediated intestinal injury and inflammatory response in necrotizing enterocolitis].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China. *Corresponding author, E-mail:

Necrotizing enterocolitis (NEC) is an intestinal inflammatory and necrotic disease seen in premature infants, and remains the leading cause of death resulted from gastrointestinal diseases in premature infants. The specific pathogenesis of NEC is still unclear. In recent years, a lot of studies have reported that Toll-like receptor 4 (TLR4) plays a key role in the pathogenesis of NEC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!