The introduction of different pore diameters in metal organic frameworks (MOFs) could adjust their drug delivery performance. MOFs with customized structures have potential application value in targeted drug delivery. However, no research on this topic has been found so far. In this report, isoreticular metal organic frameworks (IRMOFs) have been taken as a typical case of tailor-made MOFs, the pore size of which is enlarged (average BJH pore sizes of about 2.43, 3.06, 5.47, and 6.50 nm were determined for IRMOF-1, IRMOF-8, IRMOF-10, and IRMOF-16, respectively), emphasizing the relationship between pore size and model drugs (Oridonin, ORI) and clarifying its potential working mechanism. IRMOF-1, whose pore size matches the size of ORI, has an outstanding drug loading capacity (57.93% by wt) and release profile (about 90% in 24 h at pH 7.4). IRMOF-1 was further coated with polyethylene glycol (PEG) modified with a cell penetrating peptide (CPP44) bound to M160 (CD163L1) protein for targeting of hepatic tumor lines. This nanoplatform (CPP44-PEG@ORI@IRMOF-1) exhibited acid-responsive drug release behavior (37.86% in 10 h at pH 7.4 and 66.66% in 10 h at pH 5.5) and significantly enhanced antitumor effects. The results of cell targeting and in vivo animal imaging indicated that CPP44-PEG@ORI@IRMOF-1 may serve as a tumor-selective drug delivery nanoplatform. Toxicity assessment confirmed that PEGylated IRMOF-1 did not cause organ or systemic toxicity. Furthermore, it is encouraging that the IRMOF-based targeted drug delivery system with pore size modulation showed rapid clearance (most administered NPs are metabolized from urine and feces within 1 week) and avoided accumulation in the body, indicating their promise for biomedical applications. This MOF-based aperture modulation combined with a targeted modification strategy might find broad applications in cancer theranostics. Thus, it is convenient to customize personalized MOFs according to the size of drug molecules in future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c07450 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.
Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
In this study, a novel inhibitor of ERCC1/XPF heterodimerization, A4, was used as an inhibitor of repair for DNA damage by platinum-based chemotherapeutics. Nano-formulations of A4 were developed, using self-assembly of the following block copolymers: methoxy-poly(ethylene oxide)-block-poly(α-benzyl carboxylate-ε-caprolactone) (PEO-b-PBCL), methoxy-poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL), or methoxy-poly(ethylene oxide)-block-poly (D, L, lactide) (PEO-b-PDLA 50-50). The nano-formulations were characterized for their average diameter, polydispersity, morphology, A4 encapsulation and in vitro release.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
The global prevalence of Parkinson's Disease (PD) is on the rise, driven by an ageing population and ongoing environmental conditions. To gain a better understanding of PD pathogenesis, it is essential to consider its relationship with the ageing process, as ageing stands out as the most significant risk factor for this neurodegenerative condition. PD risk factors encompass genetic predisposition, exposure to environmental toxins, and lifestyle influences, collectively increasing the chance of PD development.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Kinimmune, Inc. St. Louis, 63141, Missouri, USA.
PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur, 56000, Malaysia.
The third most prevalent type of cancer in the world, colorectal cancer, poses a significant treatment challenge due to the nonspecific distribution, low efficacy, and high systemic toxicity associated with chemotherapy. To overcome these limitations, a targeted drug delivery system with a high cytotoxicity against cancer cells while maintaining a minimal systemic side effects represents a promising therapeutic approach. Therefore, the aim of this study was to develop an efficient gold nanocarrier for the targeted delivery of the anticancer agent everolimus to Caco-2 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!