Background: Transcription factors GATAs were a member of zinc finger protein, which could bind DNA regulatory regions to control expression of target genes, thus influencing plant growth and development either in normal condition or environmental stresses. Recently, GATA genes have been found and functionally characterized in a number of plant species. However, little information of GATA genes were annotated in wheat.

Results: In the current study, 79 GATA genes were identified in wheat, which were unevenly located on 21 chromosomes. According to the analysis of phylogenetic tree and functional domain structures, TaGATAs were classified into four subfamilies (I, II, III, and IV), consist of 35, 21, 12, and 11 genes, respectively. Meanwhile, the amino acids of 79 TaGATAs exhibited apparent difference in four subfamilies according to GATA domains comparison, gene structures and conserved motif analysis. We then analyze the gene duplication and synteny between the genomes of wheat and Arabidopsis, rice and barley, which provided insights into evolutionary characteristics. In addition, expression patterns of TaGATAs were analyzed, and they showed obvious difference in diverse tissues and abiotic stresses.

Conclusion: In general, these results provide useful information for future TaGATA gene function analysis, and it helps to better understand molecular breeding and stress response in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327314PMC
http://dx.doi.org/10.1186/s12870-022-03733-3DOI Listing

Publication Analysis

Top Keywords

gata genes
12
genes
6
gata
5
genome-wide identification
4
identification characterization
4
characterization gata
4
gata family
4
family genes
4
wheat
4
genes wheat
4

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen is crucial for the growth and development of fungi, and while the GATA transcription factor AreA is well-studied, AreB’s role in Aspergillus flavus is less understood.
  • Researchers characterized the areB gene in A. flavus, finding that its deletion negatively affects fungal growth, reduces spore production, and increases aflatoxin production, especially under poor nitrogen conditions.
  • The study highlights areB's role as a negative regulator of nitrogen catabolite repression, affecting not only nitrogen utilization but also development and secondary metabolism, which could aid in managing aflatoxin contamination.
View Article and Find Full Text PDF

Genome-wide identification, characterization and expression profiles of FORMIN gene family in cotton (Gossypium Raimondii L.).

BMC Genom Data

December 2024

Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.

Background: Gossypium raimondii serves as a widely used genomic model cotton species. Its genetic influence to enhance fiber quality and ability to adapt to challenging environments both contribute to increasing cotton production. The formins are a large protein family that predominately consists of FH1 and FH2 domains.

View Article and Find Full Text PDF

Harnessing light-harvesting chlorophyll a/b-binding proteins for multiple abiotic stress tolerance in Chlamydomonas reinhardtii: Insights from genomic and physiological analysis.

Physiol Plant

December 2024

Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.

Light-harvesting chlorophyll a/b-binding proteins (LHC) of photosystem II perform key functions in various processes, e.g., photosynthesis, development, and abiotic stress responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!