Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Milk thistle is an oil and medicinal crop known as an alternative oil crop with a high level of unsaturated fatty acids, which makes it a favorable edible oil for use in food production. To evaluate the importance of Milk thistle lipids in drought tolerance, an experiment was performed in field conditions under three different water deficit levels (Field capacity (FC), 70% FC and 40% FC). After harvesting seeds of the plant, their oily and methanolic extracts were isolated, and subsequently, types and amounts of lipids were measured using GC-MS. Genes and enzymes engaged in biosynthesizing of these lipids were identified and their expression in Arabidopsis was investigated under similar conditions. The results showed that content of almost all measured lipids of milk thistle decreased under severe drought stress, but genes (belonged to Arabidopsis), which were involved in their biosynthetic pathway showed different expression patterns. Genes biosynthesizing lipids, which had significant amounts were selected and their gene and metabolic network were established. Two networks were correlated, and for each pathway, their lipids and respective biosynthesizing genes were grouped together. Four up-regulated genes including PXG3, LOX2, CYP710A1, PAL and 4 down-regulated genes including FATA2, CYP86A1, LACS3, PLA2-ALPHA were selected. The expression of these eight genes in milk thistle was similar to Arabidopsis under drought stress. Thus, PXG3, PAL, LOX2 and CYP86A1 genes that increased expression were selected for protein analysis. Due to the lack of protein structure of these genes in the milk thistle, modeling homology was performed for them. The results of molecular docking showed that the four proteins CYP86A1, LOX2, PAL and PXG3 bind to ligands HEM, 11O, ACT and LIG, respectively. HEM ligand was involved in production of secondary metabolites and dehydration tolerance, and HEM binding site remained conserved in various plants. CA ligands were involved in synthesis of cuticles and waxes. Overall, this study confirmed the importance of lipids in drought stress tolerance in milk thistle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329356 | PMC |
http://dx.doi.org/10.1038/s41598-022-16887-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!