Background: In-silico experiments used to optimize and inform how peripheral nerve based electrode designs perform hold the promise of greatly reducing the guesswork with new designs as well as the number of animals used to identify and prove promising designs. Given adequate realism, in-silico experiments offer the promise of identifying putative mechanisms that further inform exploration of novel stimulation and recording techniques and their interactions with bioelectric phenomena. However, despite using validated nerve fiber models, when applied to the more complex case of an implanted extracellular electrode, the in-silico experiments often do not compare quantitatively with the results of experiments conducted in in-vivo experiments. This suggests that the accuracy/realism of the environment and the lamination of the nerve bundle plays an important role in this discrepancy. This paper describes the sensitivity of in-silico models to the electrical parameter estimates and volume conductor type used.
Methods: In-vivo work was performed on rat vagus nerves (N = 2) to characterize the strength-duration curve for various peaks identified in a compound nerve action potential (CAP) measured via a needle electrode. The vagus nerve has several distinct populations of nerve fiber calibers and types. Recruitment of a fiber caliber/type generates distinct peaks that can be identified, and whose conduction delay correlates to a conduction velocity. Peaks were identified by their recruitment thresholds and associated to their conduction velocities by the conduction delays of their peaks. An in-silico analog of the in-vivo experiment was constructed and experiments were run at the two extreme volume conductor cases: (1) The nerve in-saline, and (2) the nerve in-air. The specifically targeted electrical parameters were extraneural environment (in-air versus saline submersion), the resistivity (ρ) of the epineurium and perineurium, and the relative permittivity (ε ) of those same tissues. A time varying finite element method (FEM) model of the potential distribution vs time was quantified and projected onto a modified McIntyre, Richardson, and Grill (MRG), myelinated spinal nerve, active fiber model in NEURON to identify the threshold of activation as a function of stimulus pulse amplitude versus pulse width versus fiber diameter. The in-silico results were then compared to the in-vivo results.
Results: The finite element method simulations spanned two macro environments: in-saline and in-air. For these environments, the resistivities for low and high frequencies as well as two different permittivity cases were used. Between these 8 cases unique cases it was found that the most accurate combination of those variables was the in-air environment for low-frequency resistivity (ρ ) and ex-vivo a measured permittivity (ε ) from unpublished ex-vivo experiments in canine vagal nerve, achieving a high degree of convergence (r = 0.96). As the in-vivo work was conducted in in-air, the in-air boundary condition test case was convergent with the in-silico results.
Conclusions: The results of this investigation suggest that increasing realism in simulations begets more accurate predictions. Of particular importance are (ρ) and extraneural environment, with reactive electrical parameters becoming important for input waveforms with energy in higher frequencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529855 | PMC |
http://dx.doi.org/10.1111/aor.14374 | DOI Listing |
Molecules
January 2025
Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.
View Article and Find Full Text PDFLife (Basel)
January 2025
Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
The scorpion Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK 74078, USA.
Metagenomics analysis has enabled the measurement of the microbiome diversity in environmental samples without prior targeted enrichment. Functional and phylogenetic studies based on microbial diversity retrieved using HTS platforms have advanced from detecting known organisms and discovering unknown species to applications in disease diagnostics. Robust validation processes are essential for test reliability, requiring standard samples and databases deriving from real samples and in silico generated artificial controls.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
Europinidin is a novel anthocyanidin found in the petals of Plumbago europea that exhibits several physiological effects. Research was conducted to assess europinidin's cardioprotective efficacy in a diabetic and myocardial infarction (MI) experimental model. Rat was injected through the intraperitoneal administration of 45 mg/kg of streptozotocin (STZ), while MI was induced by subcutaneously administering 85 mg/kg of isoproterenol (ISP) at 24 and 48 h prior to the sacrifice procedure.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, University of Johannesburg, Auckland Park Kingsway Campus, 2006, South Africa. Electronic address:
To address microbial infections and combat drug resistance, we designed, synthesized, and evaluated three novel s-triazine clubbed pharmacophores: 1-acetylpyrazoline (5a-e), 2-aminopyrimidine (6a-e), and 1,5-benzodiazepine (7a-e). These were derived from chalcone (4a-e), showing improved pharmacological profiles. The compounds underwent characterization by FTIR, NMR, and Mass Spectroscopy, and their antimicrobial activities, along with structure-activity relationships (SAR), were assessed using in silico and in vitro methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!