A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional Morphology of the Urohyal Shunt for Symmetrical and Asymmetrical Ventilation in the Flatfish, Isopsetta isolepis. | LitMetric

Functional Morphology of the Urohyal Shunt for Symmetrical and Asymmetrical Ventilation in the Flatfish, Isopsetta isolepis.

Integr Comp Biol

Department of Biology, Howard University, 415 College Street NW, Washington, DC 20059, USA.

Published: October 2022

Flatfishes are benthic fishes that are well known for their ability to bury in the sediment, making the transition from above to below the sediment in a matter of seconds. Laterally flattened bodies allow flatfishes to lay flush against the substrate, a behavior facilitated by having an asymmetrical neurocranium with two eyes on one side of the head. Despite neurocranial asymmetry, their gill chambers are highly symmetrical. Additionally, most flatfishes have a uniquely shaped urohyal bone that forms passageway for water to travel ventrally between the "eyed-side" and "blind-side" gill chambers. Our study examines whether the kinematics and pressures generated by the gill chambers are also symmetrical during breathing above and below the sediment and during rapid burial in sediment. We studied Isopsetta isolepis individuals using sonomicrometry crystals to measure the changes in positions of the opercle bones relative to the urohyal and pressure transducers to record gill chamber pressures during burial. We conclude I. isolepis exhibit both symmetrical and asymmetrical breathing above and below the sediment. Pressures and movements were highly asymmetrical during burial jetting. We observed motions that indicate that the urohyal is an active shunt to allow passage of water between the eyed to the blind-side gill chambers.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icac126DOI Listing

Publication Analysis

Top Keywords

gill chambers
16
symmetrical asymmetrical
8
isopsetta isolepis
8
breathing sediment
8
sediment
5
gill
5
functional morphology
4
urohyal
4
morphology urohyal
4
urohyal shunt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!