This study was conducted to check whether benzene is contained inside the petroleum-based cleaning agent used in the printing industry and measure whether it is actually exposed to the air. Benzene was analyzed inside the cleaning agent and air exposure evaluation was done by area sampling. Risk assessment was performed using the Chemical Hazard Risk Management (CHARM) technique. Most products contained benzene based on the results obtained from this study. As a result of collecting air samples and checking whether the workers were exposed to benzene actually, benzene was detected in three samples. As a result of the risk assessment, most of printing businesses scored more than four points. Benzene was detected in all petroleum-based cleaning products. In addition, benzene was detected in some of air samples. Considering the fact that even small exposure level of benzene is dangerous to worker health and most of the printing businesses in South Korea operate on a small scale with fewer than five employees so the health management system is poor, it is necessary to prepare appropriate measures to prevent work diseases provoked by benzene exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398173PMC
http://dx.doi.org/10.2486/indhealth.2022-0103DOI Listing

Publication Analysis

Top Keywords

benzene detected
12
benzene
10
benzene exposure
8
assessment printing
8
south korea
8
petroleum-based cleaning
8
cleaning agent
8
risk assessment
8
air samples
8
printing businesses
8

Similar Publications

Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks.

J Colloid Interface Sci

January 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:

The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.

View Article and Find Full Text PDF

Sensitive fluorescence turn-on sensing of hydroxyl radical and glucose based on the oxidative degradation of reductive organic cage.

Talanta

January 2025

College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:

The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.

View Article and Find Full Text PDF

Smartphone-Assisted Fluorescence Determination of Inorganic Phosphorus Using a Samarium Metal-Organic Framework.

Inorg Chem

January 2025

Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China.

Inorganic phosphori are widely used in food, whose quantitative detection method is of significance. This work presents a Sm-DDB (HDDB = 1,3-di(3',5'-dicarboxylphenyl)benzene), which acts as a ratiometric fluorescence sensor to monitor PO, HPO, and (PO) with high sensitivity. The determination factors of pH, MOF dosage, and fluorescence response time are optimized as 7.

View Article and Find Full Text PDF

Spatiotemporal Spectroscopy of Fast Excited-State Diffusion in 2D Covalent Organic Framework Thin Films.

J Am Chem Soc

January 2025

Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.

Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.

View Article and Find Full Text PDF

An in situ reactive zone approach using calcium peroxide for the remediation of benzene and chlorobenzene in groundwater: A field study.

J Environ Manage

December 2024

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!