Therapeutic Abs directed toward TNF-α display significant immunogenicity in humans, frequently leading to lower serum concentrations of the Ab that are associated with lower treatment efficacy. The enhanced incidence of immunogenicity observed with this class of therapeutics may be mediated by the expression of TNF-α as a homotrimer, both as a soluble serum protein and as a membrane-associated protein (mTNF-α) on the surface of dendritic cells. The TNF-α homotrimer enables the formation of polyvalent Ab-TNF-α immune complexes (ICs) that enhance binding to FcR and neonatal FcR. Polyvalent ICs and Ab bound to mTNF-α on the surface of dendritic cells can internalize, traffic to the lysosomes, and be processed for presentation by MHC molecules. To diminish immunogenicity caused by trafficking of ICs and mTNF-α to the lysosomes, we engineered a monovalent format of adalimumab with pH-sensitive binding to TNF-α. The engineered variant, termed AF-M2637, did not cross-link TNF-α trimers and consequently formed small, nonprecipitating ICs only. AF-M2637 bound TNF-α with high affinity at pH 7.4 (EC = 1.1 nM) and displayed a significantly faster dissociation rate than adalimumab at pH 6.0. No immune response to AF-M2637 was detected in mice following a single i.v. dose. In contrast, rapid immunization was detected following the injection of a single i.v. dose of adalimumab, monovalent adalimumab, or the bivalent form of the pH-sensitive variant. These data suggest that ICs and mTNF-α both contribute to the immunogenicity of adalimumab in mice and provide a general strategy for engineering less immunogenic therapeutic TNF-α Abs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580234 | PMC |
http://dx.doi.org/10.4049/jimmunol.2101180 | DOI Listing |
Membranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
NaCl and CaCl are commonly used edible salts in food. The synergistic influences of these two salts on the physicochemical properties of whey protein isolate-carrageenan (WPI-Car) complexes were investigated in relation to their foaming and emulsifying properties. The results showed that as the ratio of NaCl: CaCl decreased from 6:0 to 3:3, the turbidity of the complexes increased from 0.
View Article and Find Full Text PDFWater Res
January 2025
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37205, USA; Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37205, USA. Electronic address:
Nanofiltration (NF) membranes have the potential to significantly advance resource recovery efforts where monovalent/divalent ion separation is critical, but their utilization is limited by inadequate stability under extreme conditions. "Base separation"-i.e.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80305.
Immunological interventions, like vaccinations, are enabled by the predictive control of humoral responses to novel antigens. While the development trajectories for many broadly neutralizing antibodies (bnAbs) have been measured, it is less established how human subtype-specific antibodies develop from their precursors. In this work, we evaluated the retrospective development trajectories for eight anti-SARS-CoV-2 Spike human antibodies (Abs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!