Single atoms or ions on surfaces affect processes from nucleation to electrochemical reactions and heterogeneous catalysis. Transmission electron microscopy is a leading approach for visualizing single atoms on a variety of substrates. It conventionally requires high vacuum conditions, but has been developed for in situ imaging in liquid and gaseous environments with a combined spatial and temporal resolution that is unmatched by any other method-notwithstanding concerns about electron-beam effects on samples. When imaging in liquid using commercial technologies, electron scattering in the windows enclosing the sample and in the liquid generally limits the achievable resolution to a few nanometres. Graphene liquid cells, on the other hand, have enabled atomic-resolution imaging of metal nanoparticles in liquids. Here we show that a double graphene liquid cell, consisting of a central molybdenum disulfide monolayer separated by hexagonal boron nitride spacers from the two enclosing graphene windows, makes it possible to monitor, with atomic resolution, the dynamics of platinum adatoms on the monolayer in an aqueous salt solution. By imaging more than 70,000 single adatom adsorption sites, we compare the site preference and dynamic motion of the adatoms in both a fully hydrated and a vacuum state. We find a modified adsorption site distribution and higher diffusivities for the adatoms in the liquid phase compared with those in vacuum. This approach paves the way for in situ liquid-phase imaging of chemical processes with single-atom precision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-022-05130-0 | DOI Listing |
J Am Chem Soc
December 2024
New Cornerstone Science Laboratory, Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
Plateau-Rayleigh instability─a macroscopic phenomenon describing the volume-constant breakup of one-dimensional continuous fluids─has now been widely observed in adatoms, liquids, polymers, and liquid metals. This instability enables controlled wetting-dewetting behavior at fluid-solid interfaces and, thereby, the self-limited patterning into ordered structures. However, it has yet to be observed in conventional inorganic solids, as the rigid lattices restrict their "fluidity".
View Article and Find Full Text PDFNano Lett
November 2024
Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Due to their flexible geometry, in-plane selective area grown (SAG) nanowires (NWs) encompass the advantages of vapor-liquid-solid NWs and planar structures. The complex interplay of growth kinetics and NW dimensions provides new pathways for crystal engineering; however, their growth mechanisms remain poorly understood. We analyze the growth mechanisms of GaAs(Sb) and InGaAs/GaAs(Sb) in-plane SAG NWs using molecular beam epitaxy (MBE).
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
In this work, supported Pt monometallic catalysts were prepared using oxide and carbon supports by conventional impregnation methods. Similar Pt metallic nanoparticle sizes (mean sizes about 1.8-2 nm) have been obtained using different Pt precursor loadings (0.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, School of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China. Electronic address:
The Mg-ion battery faces significant limitations due to its liquid electrolyte, which suffers from inherent issues such as leakage and the growth of Mg dendrites. In contrast, gel polymer electrolytes (GPEs) offer heightened safety, a wide voltage window, and excellent flexibility, making them a promising alternative with outstanding electrochemical performance. In this study, a cyano-modified cellulose (CEC) GPE was engineered to aim at enhancing ion transportation and promoting uniform ion-flux through interactions between N and Mg ions.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2023
Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia.
Coalescence of nanowires and other three-dimensional structures into continuous film is desirable for growing low-dislocation-density III-nitride and III-V materials on lattice-mismatched substrates; this is also interesting from a fundamental viewpoint. Here, we develop a growth model for vertical nanowires which, under rather general assumptions on the solid-like coalescence process within the Kolmogorov crystallization theory, results in a morphological diagram for the asymptotic coverage of a substrate surface. The coverage is presented as a function of two variables: the material collection efficiency on the top nanowire facet a and the normalized surface diffusion flux of adatoms from the NW sidewalls b.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!