AI Article Synopsis

Article Abstract

Supramolecular cavities have been traditionally used to stabilize reactive redox intermediates. Recently with the success of multiple new photoredox catalytic strategies that use supramolecular cages, there is a growing demand for photogeneration strategies of diverse reactive intermediates inside confined spaces, which will drive enzyme-like catalysis in real time. Here we report the excited state dynamics of a redox-active TTF radical cation and its corresponding dimethyl-derivative DiMeTTF inside a confined supramolecular cavity. We prepare the radical cation by spontaneous oxidation of neutral TTF upon incarceration inside a water-soluble nanocage PdL, and characterize it with a combination of resonance Raman and electron paramagnetic resonance spectroscopy. Using broadband transient absorption spectroscopy, we demonstrate that the confined native TTF radical cation and its dimethyl derivative upon photoexcitation rapidly de-excite to form the hot ground state, thereby inhibiting further oxidation to a TTF dication. We discuss our results in the context of excited state crossings of the radical cation potentials as well as modifying the cage energetics to generate a stable dication. Our work has important implications for the usage of such radical cations for photoactivated catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01916gDOI Listing

Publication Analysis

Top Keywords

radical cation
20
excited state
12
ttf radical
12
state dynamics
8
inside water-soluble
8
water-soluble nanocage
8
inside confined
8
radical
6
ttf
5
cation
5

Similar Publications

Metal oxides are promising catalysts for small molecule hydrogen chemistries, mediated by interfacial proton-coupled electron transfer (PCET) processes. Engineering the mechanism of PCET has been shown to control the selectivity of reduced products, providing an additional route for improving reductive catalysis with metal oxides. In this work, we present kinetic resolution of the rate determining proton-transfer step of PCET to a titanium-doped POV, TiVO(OCH) with 9,10-dihydrophenazine by monitoring the loss of the cationic radical intermediate using stopped-flow analysis.

View Article and Find Full Text PDF

This paper reports the synthesis, crystal structures and conducting properties of the first BEDT-TTF radical-cation salts with symmetry tris-coordinated racemic lanthanide(III) anions. It is also the first crystallographic determination of the nine-coordinate tris(chelidonato)terbate and tris(chelidonato)dysprosate anions (chelidonic acid = clo = 4-oxo-4-pyran-2,6-dicarboxylic acid). Salt α-(BEDT-TTF)M(chelidonato)·EtOH·2HO is semimetallic for M = Tb, and semiconducting for M = Dy.

View Article and Find Full Text PDF

The work establishes the salt of a tetra-cationic distibane, [LSb][CFSO] = [][OTf] (CFSO = OTf), stabilized by a bis(α-iminopyridine) ligand , defying the Coulombic repulsion. The synthetic approach involved a dehydrocoupling reaction when a mixture of and Sb(OTf) in a 1:1 ratio was treated with EtSiH/LiBEtH as the hydride source. Compound [][OTf] was also achieved from [LSbCl][OTf] as a precursor and using EtSiH.

View Article and Find Full Text PDF

Proton-electron mixed conductors (PEMCs) are an essential component for potential applications in hydrogen separation and energy conversion devices. However, the exploration of PEMCs with excellent mixed conduction, which is quantified by the ambipolar conductivity, σ = σσ/(σ + σ) (σ: electronic conductivity; σ: proton conductivity), is still a great challenge, largely due to the lack of structural characterization of both conducting mechanisms. In this study, we prepared a molecule-based proton-electron mixed-conducting cation radical salt, (ET)[Pt(pop)(Hpop)]·PhCN (ET: bis(ethylenedithio)tetrathiafulvalene, pop: PHO), by electrocrystallization.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!