We present a computational investigation of the sulfuric acid, glycine, serine, ammonia, and water system to understand if this system can form prenucleation clusters, which are precursors to larger aerosols in the atmosphere. We have performed a comprehensive configurational search of all possible clusters in this system, starting with the four different monomers and zero to five waters. Accurate Gibbs free energies of formation have been calculated with the DLPNO-CCSD(T)/complete basis set (CBS) method on ωb97xd/6-31++G** geometries. For the dry dimers of sulfuric acid, the weakest base, serine, is found to form the most stable complex, which is a consequence of the strong di-ionic complex formed between the bisulfate ion and the protonated serine cation. For the dry dimers without sulfuric acid, the glycine-serine complex is more stable than the glycine-ammonia or serine-ammonia complexes, stemming from the detailed structure and not related to base strength. For the larger complexes, sulfuric acid deprotonates and the proton is shifted to glycine, serine, or ammonia. The two amino acids and ammonia are almost interchangeable and there is no easy way to predict which molecule will be protonated without the calculated results. Assuming reasonable starting concentrations and a closed system of sulfuric acid, glycine, serine, ammonia, and five waters, we predict the concentrations of all possible complexes at two temperatures spanning the troposphere. The most negative Δ° values are a function of the detailed molecular interactions of these clusters. These details are more important than the base strength of ammonia, glycine, and serine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c03539 | DOI Listing |
Alzheimers Dement
December 2024
Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Background: Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain.
View Article and Find Full Text PDFMol Omics
January 2025
Division of Natural Sciences, New College of Florida, 5800 Bay Shore Road, Sarasota, FL 34243, USA.
Brevetoxins are a type of neurotoxin produced in red tide blooms. Northern quahogs () are extensively used in commercial aquaculture farming, and early-stage metabolomics studies can provide early warnings of brevetoxins for farmers. In this study, NMR-based metabolomics was performed to investigate the response of clam gills and digestive glands under a series of sublethal doses of brevetoxins.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Calle 4 B # 36-00, Cali, Colombia.
JACS Au
December 2024
Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518055, China.
The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions.
View Article and Find Full Text PDFDev Comp Immunol
December 2024
National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China. Electronic address:
Saprolegniasis is a common fungal disease in aquaculture. It will form white flocculent hyphae on the skin of fish, and the hyphae may grow inward and penetrate into muscle tissue, which will reduce the immunity of the body and eventually lead to death. However, there are still some gaps in the mechanism of the fish body surface against the invasion of Saprolegnia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!