Effects of Interfacial Shear on Particle Aggregation at an Oil/Water Interface.

Langmuir

Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States.

Published: August 2022

Using a Stokesian dynamics simulation, the microstructure of particle aggregates at an oil/water interface with an applied Couette flow is studied. The results of the aggregation are consistent with previously published experimental work demonstrating multiple regimes of behavior based on the relative strength of shear and capillary forces. In previous work, densification of aggregates at low shear rates was theorized to occur due to short time scale fragmentation/reaggregation of aggregates with rigid particle bonds. In simulations, densification is observed at low shear rates but occurs due to local reorganization of particles due to capillary torques over long time scales. Moderate shear rates create mobile bonds between particles at shorter time scales, allowing aggregates to fragment without reaggregation into smaller isolated clusters, consistent with prior experimental work. At the highest shear rates, aggregation is inhibited completely.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c01159DOI Listing

Publication Analysis

Top Keywords

shear rates
16
oil/water interface
8
experimental work
8
low shear
8
time scales
8
shear
6
effects interfacial
4
interfacial shear
4
shear particle
4
particle aggregation
4

Similar Publications

Development of an Analytical Model for Predicting the Shear Viscosity of Polypropylene Compounds.

Polymers (Basel)

January 2025

Institute for Plastics Processing (IKV) in Industry and Craft, RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, Germany.

The need for an efficient adaptation of existing polypropylene (PP) formulations or the creation of new formulations has become increasingly important in various industries. Variations in viscosity resulting from changes in raw materials, fillers, and additives can have a significant impact on the processing and quality of PP products. This study presents the development of an analytical model designed to predict the shear viscosity of complex PP blends.

View Article and Find Full Text PDF

Meringue has limited the use of meringue for personalization because of its thermally unstable system. Citric acid (CA) enhancement of egg white protein (EWP) foaming properties is proposed for the preparation of 3D-printed meringues. The results showed that CA increased the viscosity, exposure of hydrophobic groups (79.

View Article and Find Full Text PDF

Objective: The triply periodic minimal surface (TPMS) Gyroid porous scaffolds were built with identical porosity while varying pore sizes were used by fluid mechanics finite element analysis (FEA) to simulate the microenvironment. The effects of scaffolds with different pore sizes on cell adhesion, proliferation, and osteogenic differentiation were evaluated through calculating fluid velocity, wall shear stress, and permeability in the scaffolds.

Methods: Three types of gyroid porous scaffolds, with pore sizes of 400, 600 and 800 μm, were established by nTopology software.

View Article and Find Full Text PDF

Accurate models for predicting drop dynamics, such as maximum drop departure sizes, are crucial for estimating heat transfer rates during condensation on superhydrophobic (SH) surfaces. Previous studies have focused on examining the heat transfer rates for SH surfaces under the influence of gravity or vapor flowing over the surface. This study investigates the impact of surface solid fraction and texture scale on drop mobility in a condensing environment with a humid air flow.

View Article and Find Full Text PDF

The field of tissue engineering has made significant advancements with extrusion-based bioprinting, which uses shear forces to create intricate tissue structures. However, the success of this method heavily relies on the rheological properties of bioinks. Most bioinks use shear-thinning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!