The process of protein biosynthesis is initiated by the aminoacylation process where a transfer ribonucleic acid (tRNA) is charged by the attachment of its cognate amino acid at the active site of the corresponding aminoacyl tRNA synthetase enzyme. The first step of the aminoacylation process, known as the adenylation reaction, involves activation of the cognate amino acid where it reacts with a molecule of adenosine triphosphate (ATP) at the active site of the enzyme to form the aminoacyl adenylate and inorganic pyrophosphate. In the current work, we have investigated the adenylation reaction between aspartic acid and ATP at the active site of the fully solvated aspartyl tRNA synthetase (AspRS) from in aqueous medium at room temperature through hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with enhanced sampling methods of well-tempered and well-sliced metadynamics. The objective of the present work is to study the associated free energy landscape and reaction barrier and also to explore the effects of active site mutation on the free energy surface of the reaction. The current calculations include finite temperature effects on free energy profiles. In particular, apart from contributions of interaction energies, the current calculations also include contributions of conformational, vibrational, and translational entropy of active site residues, substrates, and also the rest of the solvated protein and surrounding water into the free energy calculations. The present QM/MM metadynamics simulations predict a free energy barrier of 23.35 and 23.5 kcal/mol for two different metadynamics methods used to perform the reaction at the active site of the wild type enzyme. The free energy barrier increases to 30.6 kcal/mol when Arg217, which is an important conserved residue of the wild type enzyme at its active site, is mutated by alanine. These free energy results including the effect of mutation compare reasonably well with those of kinetic experiments that are available in the literature. The current work also provides molecular details of structural changes of the reactants and surroundings as the system dynamically evolves along the reaction pathway from reactant to the product state through QM/MM metadynamics simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c03843DOI Listing

Publication Analysis

Top Keywords

free energy
32
active site
32
adenylation reaction
12
aminoacylation process
12
trna synthetase
12
free
8
energy landscape
8
active
8
site
8
aspartyl trna
8

Similar Publications

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

Attix free-air chamber correction factors computed using EGSnrc.

Med Phys

January 2025

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Background: A cylindrical free-air chamber, the Attix FAC, is used for absolute air-kerma measurements of low-energy photon beams at the University of Wisconsin Medical Radiation Research Center. Correction factors for air-kerma measurements of specific beams were determined in the 1990s. In order to measure air-kerma rates of beams in development, new correction factors must be computed.

View Article and Find Full Text PDF

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

Mechanistic insight into the decomposition of sulfone compounds in supercritical water.

J Environ Manage

January 2025

State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University, NO.28 Xianning West Road, Xi'an, 710049, Shaanxi Province, China.

Supercritical water gasification (SCWG) is famous for the clean utilization of organic wastes without SO emission. Investigating the decomposition mechanism of sulfone compounds, the dominant organic sulfur compounds of organic wastes, in supercritical water (SCW) is conducive to the development of SCWG technology. Herein, the comparative decomposition mechanism of phenyl vinyl sulfone (PVS), diphenyl sulfone (DS), and benzo[b]thiophene 1,1-dioxide (BD) are explored via experiments and density functional theoretical (DFT) calculations.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!