Thin films of Co-MOF-74 and Ni-MOF-74 were synthesized on Au-coated quartz crystal microbalance substrates by a vapor-assisted conversion (VAC) method that precludes the need for activation via postsynthetic solvent exchange. All thin films were structurally characterized by powder X-ray diffraction, reflection-absorption infrared spectroscopy, and Raman spectroscopy. Scanning electron microscopy (SEM) images reveal that the Ni-MOF-74 films exists as a dense base layer with hemispherical protrusions on the surface. In contrast, the scanning electron microscopy images of the Co-MOF-74 thin films show a rough surface with spherical deposits. The thin film morphologies were different than the powders resulting from the bulk synthesis. Gravimetric vapor-phase adsorption measurements for xylene isomers and ethylbenzene within Co-MOF-74 and Ni-MOF-74 thin films were conducted, and the results were compared with those reported for the corresponding bulk powders. Despite different morphologies, the saturation capacities of Ni-MOF-74 and Co-MOF-74 thin films were found to be nearly equivalent to those reported for the bulk powders. The results demonstrate that the VAC method can produce MOF-74 thin films that retain the intrinsic properties that are observed in bulk powders.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c00816DOI Listing

Publication Analysis

Top Keywords

thin films
28
bulk powders
12
vapor-phase adsorption
8
xylene isomers
8
isomers ethylbenzene
8
thin
8
mof-74 thin
8
films
8
co-mof-74 ni-mof-74
8
vac method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!