A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Meta-optic accelerators for object classifiers. | LitMetric

Meta-optic accelerators for object classifiers.

Sci Adv

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA.

Published: July 2022

Rapid advances in deep learning have led to paradigm shifts in a number of fields, from medical image analysis to autonomous systems. These advances, however, have resulted in digital neural networks with large computational requirements, resulting in high energy consumption and limitations in real-time decision-making when computation resources are limited. Here, we demonstrate a meta-optic-based neural network accelerator that can off-load computationally expensive convolution operations into high-speed and low-power optics. In this architecture, metasurfaces enable both spatial multiplexing and additional information channels, such as polarization, in object classification. End-to-end design is used to co-optimize the optical and digital systems, resulting in a robust classifier that achieves 93.1% accurate classification of handwriting digits and 93.8% accuracy in classifying both the digit and its polarization state. This approach could enable compact, high-speed, and low-power image and information processing systems for a wide range of applications in machine vision and artificial intelligence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328681PMC
http://dx.doi.org/10.1126/sciadv.abo6410DOI Listing

Publication Analysis

Top Keywords

high-speed low-power
8
meta-optic accelerators
4
accelerators object
4
object classifiers
4
classifiers rapid
4
rapid advances
4
advances deep
4
deep learning
4
learning led
4
led paradigm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!