The bivalent chromosomes that are generated during prophase of meiosis I comprise a pair of homologous chromosomes. Homolog pairing during prophase I must include mechanisms that avoid or eliminate entanglements between non-homologous chromosomes. In Drosophila spermatocytes, non-homologous associations are disrupted by chromosome territory formation, while linkages between homologous chromosomes are maintained by special conjunction proteins. These proteins function as alternative for crossovers that link homologs during canonical meiosis but are absent during the achiasmate Drosophila male meiosis. How and where within bivalents the alternative homolog conjunction proteins function is still poorly understood. To clarify the rules that govern territory formation and alternative homolog conjunction, we have analyzed spermatocytes with chromosomal aberrations. We examined territory formation after acute chromosome cleavage by Cas9, targeted to the dodeca satellite adjacent to the centromere of chromosome 3 specifically in spermatocytes. Moreover, we studied territory organization, as well as the eventual orientation of chromosomes during meiosis I, in spermatocytes with stable structural aberrations, including heterozygous reciprocal autosomal translocations. Our observations indicate that alternative homolog conjunction is applied in a spatially confined manner. Comparable to crossovers, only a single conjunction spot per chromosome arm appears to be applied usually. These conjunction spots resist separation by the dispersing forces that drive apart homologous pericentromeric heterochromatin and embedded centromeres within territories, as well as the distinct chromosomal entities into peripheral, maximally separated territories within the spermatocyte nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359577 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1010327 | DOI Listing |
Clin Transl Immunology
December 2024
Division of Rheumatology, Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA.
Objectives: CD209L and its homologous protein CD209 act as alternative entry receptors for the SARS-CoV-2 virus and are highly expressed in the virally targeted tissues. We tested for the presence and clinical features of autoantibodies targeting these receptors and compared these with autoantibodies known to be associated with COVID-19.
Methods: Using banked samples ( = 118) from Johns Hopkins patients hospitalised with COVID-19, we defined autoantibodies against CD209 and CD209L by enzyme-linked immunosorbent assay (ELISA).
Genes Dev
December 2024
Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York 10025, USA.
The pan-neuronally expressed and phylogenetically conserved CUT homeobox gene orchestrates pan-neuronal gene expression throughout the nervous system of As in many other species, including humans, is encoded by a complex locus that also codes for a Golgi-localized protein, called CASP (Cux1 alternatively spliced product) in humans and CONE-1 ("CASP of nematodes") in How gene expression from this complex locus is controlled-and, in , directed to all cells of the nervous system-has not been investigated. We show here that pan-neuronal expression of CEH-44/CUX is controlled by a pan-neuronal RNA splicing factor, UNC-75, the homolog of vertebrate CELF proteins. During embryogenesis, the locus exclusively produces the Golgi-localized CONE-1/CASP protein in all tissues, but upon the onset of postmitotic terminal differentiation of neurons, UNC-75/CELF induces the production of the alternative CEH-44/CUX CUT homeobox gene-encoding transcript exclusively in the nervous system.
View Article and Find Full Text PDFRadiat Res
December 2024
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
Introduction: Hyperuricemia (HUA) is a metabolic syndrome caused by purine metabolism disorders. (ZP) is a medicinal and food homologous plant, and its ripe peel is used to treat diseases and as a spice for cooking. Some studies have shown that ZP can inhibit the formation of xanthine oxidase and reduce the production of uric acid.
View Article and Find Full Text PDFMol Biol Cell
December 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
The microtubule motor cytoplasmic dynein-1 transports and positions various organelles, but the molecular basis of this functional diversity is not fully understood. Cargo adaptors of the Hook protein family recruit dynein to early endosomes (EE) in fungi and human cells by forming the FTS-Hook-FHIP (FHF) complex. By contrast, the Hook homolog ZYG-12 recruits dynein to the nuclear envelope (NE) in the meiotic gonad and mitotic early embryo by forming a Linker of Nucleoskeleton and Cytoskeleton (LINC) complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!