Cilium formation and regeneration requires new protein synthesis, but the underlying cytosolic translational reprogramming remains largely unknown. Using ribosome footprinting, we performed global translatome profiling during cilia regeneration in and uncovered that flagellar genes undergo an early transcriptional activation but late translational repression. This pattern guided our identification of sphingolipid metabolism enzymes, including serine palmitoyltransferase (SPT), as essential regulators for ciliogenesis. Cryo-electron tomography showed that ceramide loss abnormally increased the membrane-axoneme distance and generated bulged cilia. We found that ceramides interact with intraflagellar transport (IFT) particle proteins that IFT motors transport along axoneme microtubules (MTs), suggesting that ceramide-IFT particle-IFT motor-MT interactions connect the ciliary membrane with the axoneme to form rod-shaped cilia. SPT-deficient vertebrate cells were defective in ciliogenesis, and SPT mutations from patients with hereditary sensory neuropathy disrupted cilia, which could be restored by sphingolipid supplementation. These results reveal a conserved role of sphingolipid in cilium formation and link compromised sphingolipid production with ciliopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9351462 | PMC |
http://dx.doi.org/10.1073/pnas.2201096119 | DOI Listing |
EMBO Rep
December 2024
Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The early branching eukaryote Naegleria gruberi can transform transiently from an amoeboid life form lacking centrioles and flagella to a flagellate life form where these elements are present, followed by reversion to the amoeboid state. The mechanisms imparting elimination of axonemes and centrioles during this reversion process are not known. Here, we uncover that flagella primarily fold onto the cell surface and fuse within milliseconds with the plasma membrane.
View Article and Find Full Text PDFTissue Cell
October 2024
Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, sn, Barcelona 08028, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal, 645, Barcelona 08028, Spain.
The ultrastructural features of the mature spermatozoon of Telorchis attenuatus (Digenea, Telorchiidae), an intestinal parasite of the red-eared turtle Trachemys scripta elegans (Testudines, Emydidae), are described using transmission electron microscopy (TEM). The mature spermatozoon of T. attenuatus is a filiform cell tapered at both ends and displays Bakhoum et al.
View Article and Find Full Text PDFTissue Cell
October 2024
Graduate Program in Animal Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil. Electronic address:
Global coverage of living coral has declined by half since 1950s. Reef-building species have been severely impacted in this climate crisis scenario, compromising the future of coral reefs. Despite their importance, there is a lack of knowledge regarding the reproductive biology of scleractinian corals.
View Article and Find Full Text PDFFluids Barriers CNS
July 2024
Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013, Seville, Spain.
AQP4 is expressed in the endfeet membranes of subpial and perivascular astrocytes and in the ependymal cells that line the ventricular system. The sporadic appearance of obstructive congenital hydrocephalus (OCHC) has been observed in the offspring of AQP4 mice (KO) due to stenosis of Silvio's aqueduct. Here, we explore whether the lack of AQP4 expression leads to abnormal development of ependymal cells in the aqueduct of mice.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
June 2024
Department of Life Sciences, University of Siena, Siena, Italy.
Wolbachia are obligate intracellular alphaproteobacteria that enhance their spreading by altering the reproductive mechanisms of several invertebrates. Among the reproductive alterations, Wolbachia also causes cytoplasmic incompatibility that leads to embryo death when infected males are crossed with uninfected females, thus selecting infected females. However, the presence of Wolbachia has important fitness costs and infected Drosophila simulans males produce less sperm than their uninfected counterparts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!